OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 15, Iss. 8 — Aug. 1, 1998
  • pp: 2283–2293

Experimental investigation of the dynamics of a stabilized nonlinear fiber ring resonator

S. Coen, M. Haelterman, Ph. Emplit, L. Delage, L. M. Simohamed, and F. Reynaud  »View Author Affiliations

JOSA B, Vol. 15, Issue 8, pp. 2283-2293 (1998)

View Full Text Article

Acrobat PDF (455 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We investigate theoretically and experimentally the nonlinear dynamics of a synchronously pumped all-fiber passive ring cavity. Our study is based on the use of a specially designed stabilization system that allows for interferometric control of the cavity length. With this system we can achieve stable operation and we are able to perform systematic and reproducible measurements for the characterization of the fundamental nonlinear behaviors of the cavity such as optical bistability, period doubling instabilities, and dissipative modulational instabilities. Through the analysis of the output pulse spectra we show that modulational instability plays a crucial role in the dynamics of the cavity (in particular, in the period-doubling route to chaos) even with normal group-velocity dispersion. A theoretical study of modulational instability in the cavity is presented and is successfully compared with experimental results.

© 1998 Optical Society of America

OCIS Codes
(140.4780) Lasers and laser optics : Optical resonators
(190.1450) Nonlinear optics : Bistability
(190.3100) Nonlinear optics : Instabilities and chaos
(190.4370) Nonlinear optics : Nonlinear optics, fibers
(190.4380) Nonlinear optics : Nonlinear optics, four-wave mixing

S. Coen, M. Haelterman, Ph. Emplit, L. Delage, L. M. Simohamed, and F. Reynaud, "Experimental investigation of the dynamics of a stabilized nonlinear fiber ring resonator," J. Opt. Soc. Am. B 15, 2283-2293 (1998)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. J. Mark, L. Y. Liu, K. L. Hall, H. A. Haus, and E. P. Ippen, “Femtosecond pulse generation in a laser with a nonlinear external resonator,” Opt. Lett. 14, 48–50 (1989).
  2. G. Sucha, S. R. Bolton, S. Weiss, and D. S. Chemla, “Period doubling and quasi-periodicity in additive-pulse mode-locked lasers,” Opt. Lett. 20, 1794–1796 (1995).
  3. E. M. Dianov, P. V. Mamyshev, A. M. Prokhorov, and D. G. Fursa, “Tunable subpicosecond synchronously pumped fiber Raman laser,” Pis’ma Zh. Eksp. Teor. Fiz. 45, 469–471 (1987) [JETP Lett. 45, 599–601 (1987)].
  4. M. Nakazawa, K. Suzuki, and H. A. Haus, “Modulational instability oscillation in nonlinear dispersive ring cavity,” Phys. Rev. A 38, 5193–5196 (1988).
  5. M. Haelterman, S. Trillo, and S. Wabnitz, “Generation of ultrahigh repetition rate soliton trains in fibre ring,” Electron. Lett. 29, 119–121 (1993).
  6. S. Wabnitz, “Suppression of interactions in a phase-locked soliton optical memory,” Opt. Lett. 18, 601–603 (1993).
  7. J. García-Mateos, F. Canal, and M. Haelterman, “Passive fiber ring flip-flop memory based on polarization dynamics,” Opt. Commun. 137, 427–436 (1997).
  8. H. M. Gibbs, Optical Bistability: Controlling Light with Light, Quantum Electronics: Principle and Applications (Academic, New York, 1985).
  9. K. Ikeda, “Multiple-valued stationary state and its instability of the transmitted light by a ring cavity system,” Opt. Commun. 30, 257–261 (1979).
  10. M. Haelterman, “Simple model for the study of period-doubling instabilities in the nonlinear ring cavity,” Appl. Phys. Lett. 61, 2756–2758 (1992).
  11. M. Haelterman, S. Trillo, and S. Wabnitz, “Polarization multistability and instability in a nonlinear dispersive ring cavity,” J. Opt. Soc. Am. B 11, 446–456 (1994).
  12. M. Haelterman and M. D. Tolley, “Pure polarization period-doubling instability in a Kerr-type nonlinear ring cavity,” Opt. Commun. 108, 165–175 (1994).
  13. M. Haelterman, G. Vitrant, and J. García-Mateos, “Symmetry-breaking bifurcation in synchronously driven fiber cavities,” in Nonlinear Guided Waves and Their Applications, Vol. 6 of 1995 OSA Technical Digest Series (Optical Society of America, Washington D.C., 1995), pp. 201–203.
  14. R. Vallée, “Role of the group velocity dispersion in the onset of instabilities in a nonlinear ring cavity,” Opt. Commun. 93, 389–399 (1992).
  15. D. W. McLaughlin, J. V. Moloney, and A. C. Newell, “New class of instabilities in passive optical cavities,” Phys. Rev. Lett. 54, 681–684 (1985).
  16. H. Nakatsuka, S. Asaka, H. Itoh, K. Ikeda, and M. Matsuoka, “Observation of bifurcation to chaos in an all-optical bistable system,” Phys. Rev. Lett. 50, 109–112 (1983).
  17. R. G. Harrison, W. J. Firth, and I. A. Al-Saidi, “Observation of bifurcation to chaos in an all-optical Fabry–Pérot resonator,” Phys. Rev. Lett. 53, 258–261 (1984).
  18. R. Vallée, “Temporal instabilities in the output of an all-fiber ring cavity,” Opt. Commun. 81, 419–426 (1991).
  19. M. B. van der Mark, J. M. Schins, and A. Lagendijk, “Beyond the Ikeda map: a nonlinear optical ring cavity excited with picosecond pulses,” Opt. Commun. 98, 120–126 (1993).
  20. G. Steinmeyer, D. Jaspert, and F. Mitschke, “Observation of a period-doubling sequence in a nonlinear optical fiber ring cavity near zero dispersion,” Opt. Commun. 104, 379–384 (1994).
  21. G. P. Agrawal, Nonlinear Fiber Optics, Optics and Photonics, 2nd ed. (Academic, San Diego, Calif., 1995).
  22. S. Coen, M. Haelterman, Ph. Emplit, L. Delage, and F. Reynaud, “Stable operation of a passive fiber resonator in the bistable and period-doubling regimes,” in Nonlinear Guided Waves and Their Applications, Vol. 15 of 1996 OSA Technical Digest Series (Optical Society of America, Washington D.C., 1996), pp. 173–175.
  23. J. J. Alleman, F. Reynaud, and P. Connes, “Fiber-linked telescope array: description and laboratory tests of a two-channel prototype,” Appl. Opt. 34, 3736–3743 (1995).
  24. Z. Y. Cheng and C. S. Tsai, “A novel integrated acoustooptic frequency shifter,” J. Lightwave Technol. 7, 1575–1580 (1989).
  25. M. Johnson, “In-line fiber-optical polarization transformer,” Appl. Opt. 18, 1288–1289 (1979).
  26. F. Reynaud, “Optical fibre Babinet compensator,” Pure Appl. Opt. 2, 185–188 (1993).
  27. F. Reynaud and J. Boca, “Compensation of thermally induced birefringence fluctuation of bow-tie fibres using an all-fibre babinet compensator,” Pure Appl. Opt. 2, 677–682 (1993).
  28. H. C. Lefevre, “Single-mode fibre fractional wave devices and polarization controllers,” Electron. Lett. 16, 778–780 (1980).
  29. C. Y. Yue, J. D. Peng, Y. B. Liao, and B. K. Zhou, “Fibre ring resonator with finesse of 1260,” Electron. Lett. 24, 622–623 (1988).
  30. L. M. Simohamed, L. Delage, and F. Reynaud, “An optical fiber delay line with 318 mm stroke,” Pure Appl. Opt. 5, 1005–1009 (1996).
  31. L. M. Simohamed and F. Reynaud, “A 2 m stroke optical fiber delay line,” Pure Appl. Opt. 6, L37–L41 (1997), letter to the editor.
  32. M. Haelterman, “Ikeda instability and transverse effects in nonlinear ring resonators,” Opt. Commun. 100, 389–398 (1993).
  33. R. M. Shelby, M. D. Levenson, and S. H. Perlmutter, “Bistability and other effects in a nonlinear fiber-optic ring resonator,” J. Opt. Soc. Am. B 5, 347–357 (1988).
  34. T. Aida and P. Davis, “Oscillation modes of laser diode pumped hybrid bistable system with large delay and application to dynamical memory,” IEEE J. Quantum Electron. 28, 686–699 (1992).
  35. T. Aida and P. Davis, “Oscillation mode selection using bifurcation of chaotic mode transitions in a nonlinear ring resonator,” IEEE J. Quantum Electron. 30, 2986–2997 (1994).
  36. E. Infeld and G. Rowlands, Nonlinear Waves, Solitons and Chaos (Cambridge U. Press, London, 1990).
  37. H. G. Schuster, Deterministic Chaos: An Introduction, 3rd ed. (VCH Verlagsgesellschaft, Weinheim, 1995).
  38. D. Dangoisse, P. Glorieux, and D. Hennequin, “Laser chaotic attractor in crisis,” Phys. Rev. Lett. 57, 2657–2660 (1986).
  39. S. Coen and M. Haelterman, “Modulational instability induced by cavity boundary conditions in a normally dispersive optical fiber,” Phys. Rev. Lett. 79, 4139–4142 (1997).
  40. A. L. Berkhoer and V. E. Zakharov, “Self excitation of waves with different polarizations in nonlinear media,” Zh. Eksp. Teor. Fiz. 58, 903 (1970) [Sov. Phys. JETP 31, 486 (1970)].
  41. G. P. Agrawal, “Modulation instability induced by cross-phase modulation,” Phys. Rev. Lett. 59, 880–883 (1987).
  42. M. Haelterman, S. Trillo, and S. Wabnitz, “Additive-modulation-instability ring laser in the normal dispersion regime of a fiber,” Opt. Lett. 17, 745–747 (1992).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited