OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 15, Iss. 9 — Sep. 1, 1998
  • pp: 2424–2432

Propagation and interaction of optical solitons in random media

F. Kh. Abdullaev, J. H. Hensen, S. Bischoff, M. P. Sørensen, and J. W. Smeltink  »View Author Affiliations

JOSA B, Vol. 15, Issue 9, pp. 2424-2432 (1998)

View Full Text Article

Enhanced HTML    Acrobat PDF (407 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The propagation of an optical soliton is studied in a fiber with randomly varying core diameter or random amplification along the fiber. The adiabatic dynamics of the soliton and radiative processes are investigated by a perturbation method based on the inverse scattering transform. The mean emitted power and the damping rate of the soliton are calculated. The interaction of solitons in random media is investigated by the Karpman–Solov’ev perturbation theory. Numerical simulations of the full nonlinear Schrödinger equation with multiplicative white- and colored-noise perturbations are performed for initial conditions corresponding to a single soliton and to two interacting solitons. The results obtained are in good agreement with the analytical estimates for white noise in the initial stage of the propagation. The numerical simulations reveal a new phenomenon in which single solitons disintegrate or split under white-noise perturbation but stabilize under colored-noise action. Finally, the existence of a bound state of two interacting solitons is observed in numerical simulations in media with colored-noise perturbation.

© 1998 Optical Society of America

OCIS Codes
(190.4370) Nonlinear optics : Nonlinear optics, fibers
(190.5530) Nonlinear optics : Pulse propagation and temporal solitons

F. Kh. Abdullaev, J. H. Hensen, S. Bischoff, M. P. Sørensen, and J. W. Smeltink, "Propagation and interaction of optical solitons in random media," J. Opt. Soc. Am. B 15, 2424-2432 (1998)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Hasegawa and Yu. Kodama, Solitons in Optical Communications (Clarendon, Oxford, 1995).
  2. J. N. Elgin, “Stochastic perturbations of optical solitons,” Opt. Lett. 18, 10 (1993). [CrossRef] [PubMed]
  3. H. A. Haus, “Quantum noise in a solitonlike repeater system,” J. Opt. Soc. Am. B 8, 1122 (1991). [CrossRef]
  4. A. Mecozzi, “Long distance transmission at zero dispersion: combined effect of Kerr nonlinearity and the noise of the in-line amplifiers,” J. Opt. Soc. Am. B 11, 462 (1994). [CrossRef]
  5. F. Kh. Abdullaev, J. G. Caputo, and N. Flytzanis, “Envelope soliton propagation in media with temporally varying dispersion,” Phys. Rev. E 50, 1552 (1994). [CrossRef]
  6. S. A. Akhmanov, V. A. Vysloukh, and A. S. Chirkin, Optics of Femtosecond Laser Pulses (American Institute of Physics, New York, 1992).
  7. J. P. Gordon, “Dispersive-perturbation of solitons of the nonlinear Schrödinger equation,” J. Opt. Soc. Am. B 9, 9 (1992). [CrossRef]
  8. R. G. Bauer and L. A. Mel’nikov, “Multisoliton fission and quasi-periodicity in a fiber with a periodically modulated core diameter,” Optics Commun. 115, 190 (1995). [CrossRef]
  9. B. A. Malomed, “Resonant amplification of a chirped soliton in a long optical fiber with periodic amplification,” J. Opt. Soc. Am. B 13, 677 (1996). [CrossRef]
  10. F. Kh. Abdullaev, A. A. Abdumalikov, and B. B. Baizakov, “Stochastic instability of chirped optical solitons in media with periodic amplification,” Quantum Electron. 27, 171 (1997). [CrossRef]
  11. F. Kh. Abdullaev, A. A. Abdumalikov, and B. B. Baizakov, “Propagation of chirped optical solitons in fibers with randomly varying parameters,” Opt. Commun. 138, 49 (1997). [CrossRef]
  12. G. P. Agrawal, Nonlinear Fiber Optics (Academic, New York, 1990).
  13. F. Kh. Abdullaev, S. A. Darmanyan, and P. K. Khabibullaev, Optical Solitons (Springer-Verlag, Heidelberg, 1993).
  14. F. Kh. Abdullaev, “Propagation of a soliton in a fiber with fluctuating parameters,” Sov. Tech. Phys. Lett. 9, 305 (1983).
  15. V. E. Zakharov, S. V. Manakov, S. P. Novikov, and L. P. Pitaevsky, Theory of Solitons. Inverse Scattering Method (Consultants Bureau, New York, 1984).
  16. Yu. S. Kivshar and B. A. Malomed, “Dynamics of solitons in nearly integrable systems,” Rev. Mod. Phys. 61, 763 (1989). [CrossRef]
  17. V. V. Konotop and L. Vasquez, Nonlinear Random Waves (World Scientific, Singapore, 1994).
  18. S. A. Gredeskul and Yu. S. Kivshar, “Propagation and scattering of nonlinear waves in disordered systems,” Phys. Rep. 216, 1 (1992). [CrossRef]
  19. Yu. S. Kivshar, V. V. Konotop, and Yu. A. Sinitsyn, “Emission of solitons in a fluctuating medium,” Radiofizika 30, 374 (1987).
  20. V. I. Karpman and V. V. Solov’ev, “A perturbation theory for soliton systems,” Physica D 3, 142 (1981). [CrossRef]
  21. B. A. Malomed, “Bound states in a gas of solitons supported by a randomly fluctuating force,” Europhys. Lett. 30, 507 (1995). [CrossRef]
  22. H. Risken, The Fokker-Planck Equation (Springer-Verlag, Heidelberg, 1984).
  23. R. Grimshaw, J. He, and B. Malomed, “Decay of a fundamental soliton in a periodically modulated nonlinear waveguide,” Phys. Scr. 53, 385 (1996). [CrossRef]
  24. V. A. Hopkins, J. Keat, G. D. Meegan, T. Zhang, and J. D. Maynard, “Observation of the predicted behavior of nonlinear pulse propagation in disordered media,” Phys. Rev. Lett. 76, 1102 (1996). [CrossRef] [PubMed]
  25. S. Molchanov, Lectures on Random Media, Vol. 1581 of Springer Lecture Notes in Mathematics (Springer-Verlag, Berlin, 1994), Lecture 7.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited