OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 16, Iss. 1 — Jan. 1, 1999
  • pp: 164–172

Ytterbium-doped Ca4GdO(BO3)3: an efficient infrared laser and self-frequency doubling crystal

F. Mougel, K. Dardenne, G. Aka, A. Kahn-Harari, and D. Vivien  »View Author Affiliations


JOSA B, Vol. 16, Issue 1, pp. 164-172 (1999)
http://dx.doi.org/10.1364/JOSAB.16.000164


View Full Text Article

Enhanced HTML    Acrobat PDF (644 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The surge of interest in ytterbium-doped materials has led to their being proposed as substitutes for their widely used neodymium counterparts for infrared laser emission. Spectroscopic and laser investigations of ytterbium-doped Ca4GdO(BO3)3 (Yb:GdCOB), a new ytterbium-doped crystal, are reported. Laser performances under titanium:sapphire pumping suggest that this material is suitable for schemes that include laser-diode pumping. A maximum slope efficiency of 58.8% with a corresponding laser threshold of 40 mW has been demonstrated with a 1% output coupler. Laser oscillations were also observed for output-coupler transmissions of as much as 10%. Self-frequency doubling of infrared-laser emission has been observed for the first time to our knowledge in an ytterbium-doped medium. The recent demonstration of the interesting self-frequency-doubling properties of neodymium-doped Ca4GdO(BO3)3 suggests that Yb:GdCOB could also be efficient in visible laser emission because of its lack of reabsorption at the second-harmonic wavelength. All these results show that the calcium oxoborate family can be useful compact and efficient laser-diode-pumped visible-laser sources.

© 1999 Optical Society of America

OCIS Codes
(140.3580) Lasers and laser optics : Lasers, solid-state
(160.3380) Materials : Laser materials
(160.4330) Materials : Nonlinear optical materials
(160.4670) Materials : Optical materials

Citation
F. Mougel, K. Dardenne, G. Aka, A. Kahn-Harari, and D. Vivien, "Ytterbium-doped Ca4GdO(BO3)3: an efficient infrared laser and self-frequency doubling crystal," J. Opt. Soc. Am. B 16, 164-172 (1999)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-16-1-164


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. F. Mougel, G. Aka, A. Kahn-Harari, H. Hubert, J. M. Benitez, and D. Vivien, “Infrared laser performance and self-frequency doubling of Nd3+:Ca4GdO(BO3)3 (Nd:GdCOB),” Opt. Mater. 8, 161–173 (1197). [CrossRef]
  2. F. Augé, F. Mougel, G. Aka, A. Kahn-Harari, D. Vivien, F. Balembois, P. Georges, and A. Brun, “Self-frequency doubling of Nd:Ca4GdO(BO3)3 (Nd:GdCOB) laser pumped by cw Ti:sapphire or laser diode,” in Advanced Solid State Lasers, W. R. Bosenberg and M. M. Fejer, eds., Vol. 19 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1998), pp. 53–55.
  3. P. Lacovara, C. A. Wang, H. K. Choi, R. L. Aggarwal, and T. Y. Fan, “Room-temperature diode-pumped Yb:YAG laser,” Opt. Lett. 16, 1089–1092 (1991). [CrossRef] [PubMed]
  4. K. I. Schaffers, L. D. Deloach, and S. A. Payne, “Crystal growth, frequency doubling and infrared laser performance of Yb3+:BaCaBO3F,” IEEE J. Quantum Electron. 32, 741–748 (1996). [CrossRef]
  5. S. A. Payne, L. D. Deloach, L. K. Smith, W. L. Kway, J. B. Tassano, W. F. Krupke, B. H. T. Chai, and G. Loutts, “Ytterbium-doped apatite-structure crystals: a new class of laser materials,” J. Appl. Phys. 76, 497–503 (1994). [CrossRef]
  6. G. Aka, A. Kahn-Harari, D. Vivien, J. M. Benitez, F. Salin, and J. Godard, “A new nonlinear and neodymium laser self-frequency doubling crystal with congruent melting Ca4GdO(BO3)3, (GdCOB),” Eur. J. Solid State Inorg. Chem. 33, 727–736 (1996).
  7. G. Aka, A. Kahn-Harari, F. Mougel, D. Vivien, F. Salin, P. Coquelin, P. Colin, D. Pelenc, and J. L. Damelet, “Linear and nonlinear optical properties of a new gadolinium calcium oxoborate crystal: Ca4GdO(BO3)3 (GdCOB),” J. Opt. Soc. Am. B 14, 2238–2247 (1997). [CrossRef]
  8. T. N. Khamaganova, V. K. Trunov, and B. F. Dzhurinskii, “The crystal structure of calcium samarium oxide borate Ca8Sm2O2(BO3)6,” Russ. J. Inorgan. Chem. 36, 484–485 (1991).
  9. A. B. Ilyukhin and B. F. Dzhurinskii, “Crystal structure of binary oxoborate LnCa4O(BO3)3,” Russ. J. Inorgan. Chem. 38, 847–850 (1993).
  10. D. Martrou, F. Mougel, G. Aka, A. Kahn-Harari, D. Vivien, and B. Viana, “Laser performance of an ytterbium doped new single crystal: Yb3+:Ca4GdO(BO3)3 (Yb:GdCOB) under end-pumped titanium sapphire,” in Advanced Solid State Lasers, W. R. Bosenberg and M. M. Fejer, eds., Vol. 19 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1998), pp. 454–457.
  11. L. D. Deloach, S. A. Payne, W. L. Kway, J. B. Tassano, S. N. Dixit, and W. F. Krupke, “Vibrational structure in the emission spectra of Yb3+ doped apatite crystals,” J. Lumin. 62, 85–94 (1994). [CrossRef]
  12. R. Scheps, J. F. Myers, and S. A. Payne, “End-pumped Yb-doped fluoroapatite laser,” IEEE Photonics Technol. Lett. 5, 1285–1288 (1993). [CrossRef]
  13. F. Mougel, A. Kahn-Harari, G. Aka, and D. Pelenc, “Structural and thermal stability of Czochralski grown GdCOB oxoborate crystals,” J. Mater. Chem. 8, 1619–1623 (1998). [CrossRef]
  14. J. Mangin, P. Strimer, A. Claverie, and D. Pelenc, “Thermo-optic coefficient of GdCOB,” submitted to IEEE J. Quantum Electron.
  15. B. H. T. Chai, D. A. Hammons, J. M. Eichenholz, Q. Ye, W. K. Jang, L. Shah, G. M. Luntz, M. Richardson, and H. Qiu, “Lasing, second harmonic conversion and self-frequency doubling of Yb:YCOB (Yb:YCa4B3O10),” in Advanced Solid State Lasers, W. R. Bosenberg and M. M. Fejer, eds., Vol. 19 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1998), pp. 59–61.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited