OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 16, Iss. 10 — Oct. 1, 1999
  • pp: 1672–1679

Direct measurement of 248- and 193-nm excimer-induced densification in silica–germania waveguide blanks

Nicholas F. Borrelli, Douglas C. Allan, and Robert A. Modavis  »View Author Affiliations


JOSA B, Vol. 16, Issue 10, pp. 1672-1679 (1999)
http://dx.doi.org/10.1364/JOSAB.16.001672


View Full Text Article

Acrobat PDF (226 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The densification of a waveguide blank of composition 14GeO2:86SiO2 produced by 193- and 248-nm excimer exposure was measured by an interferometric technique. With the aid of a finite-element model, we derive the unconstrained densification from the experimentally determined optical phase shift. The densification versus exposure can be fitted to a power law and is compared with the behavior of fused silica. Again, with the finite-element model, an estimate is made of the refractive-index change that would be produced in a single-mode fiber. For the exposure levels typically used for the 248-nm exposure, the densification contribution to the optical index change is found to be negligible for this composition. On the other hand, for the high 193-nm exposure, the densification contribution can be dominant.

© 1999 Optical Society of America

OCIS Codes
(050.2770) Diffraction and gratings : Gratings
(060.2340) Fiber optics and optical communications : Fiber optics components
(140.3330) Lasers and laser optics : Laser damage
(140.3390) Lasers and laser optics : Laser materials processing
(160.2750) Materials : Glass and other amorphous materials
(160.5320) Materials : Photorefractive materials

Citation
Nicholas F. Borrelli, Douglas C. Allan, and Robert A. Modavis, "Direct measurement of 248- and 193-nm excimer-induced densification in silica–germania waveguide blanks," J. Opt. Soc. Am. B 16, 1672-1679 (1999)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-16-10-1672


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: application to reflection filter application,” Appl. Phys. Lett. 32, 647–648 (1978).
  2. G. Meltz, W. W. Morey, and W. H. Glenn, “Formation of Bragg gratings in optical fibers by a transverse holographic method,” Opt. Lett. 14, 823–825 (1989).
  3. K. O. Hill, B. Malo, D. C. Johnson, and F. Bilodeau, “A novel low-loss inline bimodal-fiber tap: waveguide-selective properties,” IEEE Photonics Technol. Lett. 2, 484–486 (1990).
  4. R. M. Atkins and V. Mizrahi, “Observation of changes in the UV absorption bands of single mode germanosilicate core optical fibers on writing and thermally erasing refractive index gratings,” Electron. Lett. 28, 1743–1744 (1992).
  5. R. M. Atkins, V. Mizrahi, and T. Erdogan, “248-nm induced vacuum UV spectral changes in optical fibre preform cores: support for a colour centre model of photosensitivity,” Electron. Lett. 29, 385–387 (1993).
  6. K. D. Simmons, S. LaRochelle, V. Mizrahi, G. Stegeman, and D. L. Griscom, “Correlation of defect centers with a wavelength-dependent photosensitive response in germania-doped silica optical fibers,” Opt. Lett. 16, 141–143 (1991).
  7. N. F. Borrelli, R. A. Modavis, and J. W. H. Schreurs, “Photo-effects in SiO2–GeO2 waveguides,” Integrated Photonics Research, Vol. 10 of 1992 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1992), p. 326.
  8. D. L. Williams, S. T. Davey, R. Kashyap, J. R. Armitage, and B. J. Ainsilie, “Ultraviolet absorption studies on photosensitive germanosilicate preforms and fibers,” Appl. Phys. Lett. 59, 762–764 (1991).
  9. V. B. Neustruev, E. M. Dianov, V. M. Kim, V. M. Mashinsky, M. V. Romanov, A. N. Guryanov, V. F. Khopin, and V. A. Tikhomirov, “Ultraviolet-radiation and γ-radiation-induced color centers in germanium-doped silica glass and fibers,” Fiber Integr. Opt. 8, 143–196 (1989).
  10. V. Marchenko, “Photoinduced transformations of oxygen-deficient centers,” Glass Phys. Chem. 21, 263–271 (1995).
  11. M. G. Sceats and S. B. Poole, “Stress-relief: the mechanism of photorefractive index control in fiber cores,” presented at the Sixteenth Australian Conference on Optical Fiber Technology, Adelaide, Australia, 302–305, 1991.
  12. B. Poumellec, P. Guenot, I. Riant, P. Sanonetti, P. Niay, P. Bernage, and J. F. Bayon, “UV induced densification during Bragg grating inscription in GeO2–SiO2 preforms,” Opt. Mater. 4, 441–449 (1995).
  13. P. Y. Fonjallaz, H. G. Limberger, R. P. Salathe, F. Cochet, and B. Leuenberger, “Tension increase correlated to refractive-index change in fibers containing UV-written Bragg gratings,” Opt. Lett. 20, 1346–1348 (1995).
  14. H. G. Limberger, P. Y. Fonjallaz, R. P. Salathe, and F. Cochet, “Compaction-and-photoelastic index changes in fiber Bragg gratings,” Appl. Phys. Lett. 68, 3069–3071 (1996).
  15. D. C. Allan, C. Smith, N. F. Borrelli, and T. P. Seward III, “193-nm excimer-laser-induced densification of fused silica,” Opt. Lett. 21, 1960–1962 (1996).
  16. N. F. Borrelli, C. Smith, D. C. Allan, and T. P. Seward III, “Densification of fused silica under 193-nm excitation,” J. Opt. Soc. Am. B 14, 1606–1615 (1997).
  17. D. C. Allan, C. Smith, and N. F. Borrelli, “Measurement and analysis of compaction in fused silica,” in Laser-Induced Damage in Optical Materials: 1998, G. J. Exarhos, A. H. Guenther, M. R. Kozlowski, K. L. Lewis, and M. J. Soileau, eds., Proc. SPIE 3578, 16–26 (1999).
  18. K. W. Raine, R. Feced, S. E. Kanellopoulos, and V. A. Handerek, “Measurement of axial stress at high spatial resolution in ultraviolet-exposed fibers,” Appl. Opt. 38, 1086–1095 (1999).
  19. J. Albert, K. O. Hill, D. C. Johnson, F. Bilodeau, S. J. Mihailov, N. F. Borrelli, and J. Amin, “Bragg gratings in defect-free germanium-doped fibers,” Opt. Lett. 25, 1266–1268 (1999).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited