OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 16, Iss. 2 — Feb. 1, 1999
  • pp: 308–316

Infrared emission and ion–ion interactions in thulium- and terbium-doped gallium lanthanum sulfide glass

T. Schweizer, B. N. Samson, J. R. Hector, W. S. Brocklesby, D. W. Hewak, and D. N. Payne  »View Author Affiliations

JOSA B, Vol. 16, Issue 2, pp. 308-316 (1999)

View Full Text Article

Enhanced HTML    Acrobat PDF (287 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Infrared emission at 0.7, 0.8, 1.2, 1.5, 1.8, 2.3, 3.8, and 4.8 µm is measured in thulium- (Tm3+) and terbium- (Tb3+) doped gallium lanthanum sulfide (GLS) glass. Emission cross sections are calculated from the absorption and emission spectra by use of Judd–Ofelt analysis, the Füchtbauer–Ladenburg equation, and the theory of McCumber. Fluorescence and lifetime measurements confirm energy transfer from Tm3+ to Tb3+ ions and reveal a number of new cross-relaxation and upconversion processes between Tm3+ ions involving the  3F2,3 and  3H5 levels that can be observed only in low-phonon-energy materials. These processes indicate that the most efficient pump wavelength for the 1.2- and 3.8-µm transitions is 0.7 µm. The Tm3+ fluorescence at 3.8 µm coincides with an atmospheric transmission window, and the Tb3+ fluorescence at 4.8 µm overlaps the fundamental absorption of carbon monoxide, making the glass a potential fiber laser source for remote-sensing and gas-sensing applications.

© 1999 Optical Society of America

OCIS Codes
(160.2290) Materials : Fiber materials
(160.2750) Materials : Glass and other amorphous materials
(160.3380) Materials : Laser materials
(160.5690) Materials : Rare-earth-doped materials
(300.6280) Spectroscopy : Spectroscopy, fluorescence and luminescence
(300.6340) Spectroscopy : Spectroscopy, infrared

T. Schweizer, B. N. Samson, J. R. Hector, W. S. Brocklesby, D. W. Hewak, and D. N. Payne, "Infrared emission and ion–ion interactions in thulium- and terbium-doped gallium lanthanum sulfide glass," J. Opt. Soc. Am. B 16, 308-316 (1999)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. W. Henderson, P. J. M. Suni, C. P. Hale, S. M. Hannon, J. R. Magee, D. L. Bruns, and E. H. Yuen, “Coherent laser radar at 2 μm using solid-state lasers,” IEEE Trans. Geosci. Remote Sens. 31, 4–15 (1993). [CrossRef]
  2. D. C. Hanna, I. R. Perry, and J. R. Lincoln, “A 1-watt thulium-doped cw fibre laser operating at 2 μm,” Opt. Commun. 80, 52–56 (1990). [CrossRef]
  3. M. J. F. Digonnet, Rare-Earth Doped Fiber Lasers and Amplifiers (Marcel Dekker, New York, 1993), pp. 105–120.
  4. J. Y. Allain, M. Monerie, and H. Poignant, “Tunable cw lasing around 0.82, 1.48, 1.88 and 2.35 μm in thulium-doped fluorozirconate fibre,” Electron. Lett. 25, 1660–1662 (1989). [CrossRef]
  5. R. M. Percival, D. Szebesta, and S. T. Davey, “Thulium doped terbium sensitised cw fluoride fibre laser operating on the 1.47 μm transition,” Electron. Lett. 29, 1054–1056 (1993). [CrossRef]
  6. Y. Miyajima, T. Komukai, and T. Sugawa, “1-W cw Tm-doped fluoride fibre laser at 1.47 μm,” Electron. Lett. 29, 660–661 (1993). [CrossRef]
  7. J. N. Carter, R. G. Smart, D. C. Hanna, and A. C. Tropper, “Lasing and amplification in the 0.8 μm region in thulium doped fluorozirconate fibres,” Electron. Lett. 26, 1759–1761 (1990). [CrossRef]
  8. T. Komukai, T. Yamamoto, T. Sugawa, and Y. Miyajima, “Upconversion pumped thulium-doped fluoride fiber amplifier and laser operating at 1.47 μm,” IEEE J. Quantum Electron. 31, 1880–1889 (1995). [CrossRef]
  9. T. Sakamoto, M. Shimizu, M. Yamada, T. Kanamori, Y. Ohishi, Y. Terunuma, and S. Sudo, “35-dB gain Tm-doped ZBLYAN fiber amplifier operating at 1.65 μm,” IEEE Photonics Technol. Lett. 8, 349–351 (1996). [CrossRef]
  10. F. J. McAleavey and B. D. MacCraith, “Efficient diode pumped Tm3+-doped fluoride fibre laser for hydrocarbon gas sensing,” Electron. Lett. 31, 800–802 (1995). [CrossRef]
  11. Y. B. Shin, W. Y. Cho, and J. Heo, “Multiphonon and cross relaxation phenomena in Ge-As(or Ga)-S glasses doped with Tm3+,” J. Non-Cryst. Solids 208, 29–35 (1996). [CrossRef]
  12. Y. S. Kim, W. Y. Cho, Y. B. Shin, and J. Heo, “Emission characteristics of Ge–Ga–S glasses doped with Tm3+/Ho3+,” J. Non-Cryst. Solids 203, 176–181 (1996). [CrossRef]
  13. J. Heo, W. Y. Cho, and W. J. Chung, “Sensitizing effect of Tm3+ on 2.9 μm emission from Dy3+-doped Ge25Ga5S70 glass,” J. Non-Cryst. Solids 212, 151–156 (1997). [CrossRef]
  14. L. B. Shaw, D. Schaafsma, J. Moon, B. Harbison, J. Sanghera, and I. Aggarwal, “Evaluation of the IR transitions in rare-earth-doped chalcogenide glasses,” in Conference on Lasers and Electro-Optics, Vol. 11 of 1997 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), p. 255.
  15. J. Heo, “Optical characteristics of rare-earth-doped sulphide glasses,” J. Mater. Sci. Lett. 14, 1014–1016 (1995). [CrossRef]
  16. T. Schweizer, D. W. Hewak, B. N. Samson, and D. N. Payne, “Spectroscopy of potential mid-infrared laser transitions in gallium lanthanum sulphide glass,” J. Lumin. 72–74, 419–421 (1997). [CrossRef]
  17. L. B. Shaw, B. B. Harbison, B. Cole, J. S. Sanghera, and I. D. Aggarwal, “Spectroscopy of the IR transitions in Pr3+-doped heavy metal selenide glasses,” Opt. Express 1, 87–96 (1997). [CrossRef] [PubMed]
  18. T. Schweizer, D. W. Hewak, B. N. Samson, and D. N. Payne, “Spectroscopic data of the 1.8-, 2.9-, and 4.3-μm transitions in dysprosium-doped gallium lanthanum sulfide glass,” Opt. Lett. 21, 1594–1596 (1996). [CrossRef] [PubMed]
  19. S. R. Bowman, L. B. Shaw, J. A. Moon, B. B. Harbison, and J. Ganem, “Spectroscopic studies of potential mid-ir laser materials,” in Advanced Solid-State Lasers, S. A. Payne and C. R. Pollock, eds., Vol. 1 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1996), pp. 277–279.
  20. K. Wei, D. P. Machewirth, J. Wenzel, E. Snitzer, and G. H. Sigel, Jr., “Spectroscopy of Dy3+ in Ge–Ga–S glass and its suitability for 1.3-μm fiber-optical amplifier applications,” Opt. Lett. 19, 904–906 (1994). [CrossRef] [PubMed]
  21. T. Schweizer, D. J. Brady, and D. W. Hewak, “Fabrication and spectroscopy of erbium-doped gallium lanthanum sulphide glass fibres for mid-infrared laser applications,” Opt. Express 1, 102–107 (1997). [CrossRef] [PubMed]
  22. J. Sanz, R. Cases, and R. Alcalá, “Optical properties of Tm3+ in fluorozirconate glass,” J. Non-Cryst. Solids 93, 377–386 (1987). [CrossRef]
  23. K. Hirao, S. Tanabe, S. Kishimoto, K. Tamai, and N. Soga, “UV and blue upconversion in Tm3+-doped fluoroaluminate glass by 0.655 μm excitation,” J. Non-Cryst. Solids 135, 90–93 (1991). [CrossRef]
  24. C. K. Jørgensen and B. R. Judd, “Hypersensitive pseudoquadrupole transitions in lanthanides,” Mol. Phys. 8, 281–290 (1964). [CrossRef]
  25. X. Zou and T. Izumitani, “Fluorescence mechanism and dynamics of Tm3+ singly doped and Yb3+, Tm3+ doubly doped glasses,” J. Non-Cryst. Solids 162, 58–67 (1993). [CrossRef]
  26. F. E. Auzel, “Materials and devices using double-pumped phosphors with energy transfer,” Proc. IEEE 61, 758–786 (1973). [CrossRef]
  27. C. K. Jørgensen and R. Reisfeld, “Judd–Ofelt parameters and chemical bonding,” J. Less-Common Met. 93, 107–112 (1983). [CrossRef]
  28. N. Duhamel-Henry, J. L. Adam, B. Jaquier, and C. Linarès, “Photoluminescence of new fluorophosphate glasses containing a high concentration of terbium (III) ions,” Opt. Mater. 5, 197–207 (1996). [CrossRef]
  29. B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev. 127, 750–761 (1962). [CrossRef]
  30. G. S. Ofelt, “Intensities of crystal spectra of rare-earth ions,” J. Chem. Phys. 37, 511–520 (1962). [CrossRef]
  31. M. J. Weber, “Probabilities for radiative and nonradiative decay of Er3+ in LaF3,” Phys. Rev. 157, 262–272 (1966). [CrossRef]
  32. B. F. Aull and H. P. Jensen, “Vibronic interactions in Nd:YAG resulting in nonreciprocity of absorption and stimulated emission cross sections,” IEEE J. Quantum Electron. QE-18, 925–930 (1982). [CrossRef]
  33. W. J. Miniscalco and R. S. Quimby, “General procedure for the analysis of Er3+ cross sections,” Opt. Lett. 16, 258–260 (1991). [CrossRef] [PubMed]
  34. T. Schweizer, P. E.-A. Möbert, J. R. Hector, D. W. Hewak, W. S. Brocklesby, D. N. Payne, and G. Huber, “Optical measurement of narrow band rare-earth 4f levels with energies greater than the bandgap of the host,” Phys. Rev. Lett. 80, 1537–1540 (1998). [CrossRef]
  35. D. W. Hewak, R. C. Moore, T. Schweizer, J. Wang, B. Samson, W. S. Brocklesby, D. N. Payne, and E. J. Tarbox, “Gallium lanthanum sulphide optical fibre for active and passive applications,” Electron. Lett. 32, 384–385 (1996). [CrossRef]
  36. T. Schweizer, B. N. Samson, R. C. Moore, D. W. Hewak, and D. N. Payne, “Rare-earth doped chalcogenide glass fibre laser,” Electron. Lett. 33, 414–416 (1997). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited