OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 16, Iss. 4 — Apr. 1, 1999
  • pp: 625–630

Vacuum ultraviolet 4f95d → 4f10 interconfigurational transitions of Ho3+ ions in LiLuF4 single crystals

A. C. Cefalas, E. Sarantopoulou, and Z. Kollia  »View Author Affiliations

JOSA B, Vol. 16, Issue 4, pp. 625-630 (1999)

View Full Text Article

Enhanced HTML    Acrobat PDF (344 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The laser-induced fluorescence spectrum (LIF) of LiLuF4:Ho3+ single crystals pumped by a molecular F2 pulsed-discharge laser at 157.6 nm is obtained in the vacuum ultraviolet (VUV) and UV regions of the spectrum. The observed transitions originate from the levels and the edge of the 4f95d electronic configuration, and they are assigned to the 4f95d4f10 interconfigurational transitions. The LIF spectra for the dipole-allowed transitions can be explained provided that phonon trapping of the lattice vibrations is taking place within the Stark components of the 4f95d electronic configuration. The absorption spectrum of the crystal samples in the VUV was obtained as well. We observed five main transitions between the ground level  5I8 of the 4f10 electronic configuration and the Stark components of the levels of the 4f95d electronic configuration in the spectral range between 125 and 150 nm, and we observed four main spin-forbidden transitions in the spectral range from 153 to 170 nm.

© 1999 Optical Society of America

OCIS Codes
(140.3610) Lasers and laser optics : Lasers, ultraviolet
(160.5690) Materials : Rare-earth-doped materials
(300.1030) Spectroscopy : Absorption
(300.2530) Spectroscopy : Fluorescence, laser-induced
(300.6250) Spectroscopy : Spectroscopy, condensed matter
(300.6540) Spectroscopy : Spectroscopy, ultraviolet

A. C. Cefalas, E. Sarantopoulou, and Z. Kollia, "Vacuum ultraviolet 4ƒ95d → 4ƒ10 interconfigurational transitions of Ho3+ ions in LiLuF4 single crystals," J. Opt. Soc. Am. B 16, 625-630 (1999)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. H. Yang and J. A. DeLuka, “VUV fluorescence of Nd3+, Er3+, and Tm3+-doped trifluorides and tunable coherent sources from 165 to 260 nm,” Appl. Phys. Lett. 29, 499–501 (1976). [CrossRef]
  2. D. J. Ehrlich, P. F. Moulton, and R. M. Osgood, Jr., “Ultraviolet solid-state Ce:YLF laser at 325 nm,” Opt. Lett. 4, 184–186 (1979). [CrossRef] [PubMed]
  3. D. J. Ehrlich, P. F. Moulton, and R. M. Osgood, Jr., “Optically pumped Ce:LaF3 laser at 286 nm,” Opt. Lett. 5, 339–341 (1980). [CrossRef]
  4. R. W. Waynant and P. H. Klein, “Vacuum ultraviolet emission from Nd3+:LaF3,” Appl. Phys. Lett. 46, 14–16 (1985). [CrossRef]
  5. M. A. Dubinskii, A. C. Cefalas, and C. A. Nikolaides, “Solid state LaF3:Nd3+ vuv laser pumped by a pulsed discharge F2-molecular laser at 157 nm,” Opt. Commun. 88, 122–124 (1992). [CrossRef]
  6. J. Thogersen, J. D. Gill, and H. K. Haugen, “Stepwise multiphoton excitation of the 4 f 25d configuration in Nd3+:YLF,” Opt. Commun. 132, 83–88 (1996). [CrossRef]
  7. S. Guy, M. F. Joubert, and B. Jacquier, “Photon avalanche and mean-field approximation,” Phys. Rev. B 55, 8420–8428 (1998).
  8. R. Visser, P. Dorenbos, C. W. E. Van Eijk, A. Meijerink, and H. W. den Hartog, “The scintillation intensity and decay from Nd3+ 4 f 25d and 4 f 3 excited states in several fluoride crystals,” Phys. Cond. Matt. 5, 8437–8460 (1993). [CrossRef]
  9. S. Kubodera, M. Kitahara, J. Kawanaka, W. Sasaki, and K. Kurosava, “A vacuum ultraviolet flash lamp with extremely broadened emission spectra,” Appl. Phys. Lett. 69, 452–454 (1996). [CrossRef]
  10. R. T. Wegh, H. Donker, A. Meijerink, R. J. Lamminmaki, and J. Holsa, “Vacuum-ultraviolet spectroscopy and quantum cutting for Gd3+ in LiLuF4,” Phys. Rev. B 56, 13841–13848 (1997). [CrossRef]
  11. A. M. Srivastava and S. J. Duclos, “On the luminescence of YF3–Pr3+ under vacuum ultraviolet and X-ray emission,” Chem. Phys. Lett. 275, 453–456 (1997). [CrossRef]
  12. M. J. Digonnet, R. W. Sadowski, H. J. Shaw, and R. H. Pantell, “Resonantly enhanced nonlinearity in doped fibers for low power all optical switching,” Opt. Fiber Technol.: Mater., Devices Syst. 3, 44–64 (1997). [CrossRef]
  13. Z. Kollia, E. Sarantopoulou, A. C. Cefalas, C. A. Nikolaides, A. K. Naumov, V. V. Semashko, R. Yu Abdulsabirov, S. L. Korableva, and M. A. Dubinskii, “Vacuum-ultraviolet interconfigurational 4 f 3→4 f 25d absorption and emission studies of the Nd3+ ion in KYF, YF, and YLF crystal hosts,” J. Opt. Soc. Am. B 12, 782–785 (1995). [CrossRef]
  14. T. Szczurek and M. Schlesinger, “4 f→5d transition studies in calcium fluoride,” Phys. Rev. B 9, 3938–3940 (1974). [CrossRef]
  15. T. Szczurek and M. Schlesinger, “Vacuum ultraviolet absorption spectra of CaF2:RE3+ crystals,” Proc. Rare Earths Spectrosc. Symp. 309–330 (1985), and references therein.
  16. W. S. Heaps, L. R. Elias, and W. M. Yen, “Vacuum ultraviolet absorption bands of trivalent lanthanides in LaF3,” Phys. Rev. B 13, 94–104 (1976). [CrossRef]
  17. A. A. Vlasenko, L. I. Devyatkova, O. N. Ivanova, V. V. Mizailin, S. P. Chernov, T. Uvarova, and B. P. Sobolev, “Transmission spectra of single crystals of the type BaLn2F8 in a wide spectral region (from 12 to 0.12 μm),” Sov. Phys. Dokl. 30, 395–397 (1985).
  18. G. H. Dieke and H. M. Crosswhite, “The spectra of the doubly and triply ionized rare earths,” Appl. Opt. 2, 675–686 (1963). [CrossRef]
  19. R. T. Wegh, H. Donker, and A. Meijerink, “Spin-allowed and spin forbidden emission from Er3+ and LiLuF4,” Phys. Rev. B 57, 2025–2028 (1998); R. T. Wegh, H. Donker, and A. Meijerink, “Vacuum ultraviolet excitation and emission studies of 4 f n−1→4 f n−15d transition for Ln3+ in LiYF4,” Proc. Electrochem. Soc. 97, 284–295 (1998). [CrossRef]
  20. E. Sarantopoulou, Z. Kollia, A. C. Cefalas, M. A. Dubinskii, C. A. Nikolaides, R. Yu Abdulsabirov, S. L. Korableva, A. K. Naumov, and V. V. Semashko, “Vacuum ultraviolet and ultraviolet fluorescence and absorption studies of Er3+-doped LiLuF4 single crystals,” Appl. Phys. Lett. 65, 813–815 (1994). [CrossRef]
  21. Z. Kollia, E. Sarantopoulou, A. C. Cefalas, A. K. Naumov, V. V. Semashko, R. Yu. Abdulsabirov, and S. L. Korableva, “On the 4 f 25d→4 f 3 interconfigurational transitions of Nd3+ ions in K2YF5 and LiYF4 crystal hosts,” Opt. Commun. 149, 386 (1998). [CrossRef]
  22. S. Geschwind, G. E. Devlin, and R. L. Cohen, “Orbach relaxation and hyperfine structure in the excited 2E state of Cr3+ in Al2O3,” Phys. Rev. Lett. 137, A1087 (1965).
  23. L. I. Devyatkova, O. N. Ivanova, V. V. Mikhailin, S. N. Rudnev, and S. P. Chernov, “High-energy 4 f states of Er3+ and Ho3+ ions in fluoride crystals,” Opt. Spectrosc. 62, 275–276 (1987).
  24. W. T. Carnall, G. L. Goodman, K. Rajnak, and R. S. Rana, “A systematic analysis of the spectra of the lanthanides doped into single crystal LaF3,” J. Chem. Phys. 90, 3443–3457 (1989). [CrossRef]
  25. H. M. Crosswhite, H. Crosswhite, N. Edelstein, and K. Rajnak, “Parametric energy level analysis of Ho3+:LaCl3,” J. Chem. Phys. 67, 3002–3008 (1997). [CrossRef]
  26. G. Dieke, in Spectra and Energy Levels of Rare Earth Ions in Crystals, H. M. Crosswhite and H. Crosswhite, eds. (Wiley, New York, 1968), Vol. 5, p. 461.
  27. N. I. Agladze and M. N. Popova, “Hyperfine structure in optical spectra of LiLuF4–Ho,” Solid State Commun. 55, 1097–1100 (1985). [CrossRef]
  28. W. T. Carnall, P. R. Fields, and K. Rajnak, “Electronic energy levels in the trivalent lanthanide aquo ions. I. Pr3+, Nd3+, Pm3+, Sm3+, Dy3+, Ho3+, Er3+, and Tm3+,” J. Chem. Phys. 49, 4424–4442 (1968). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited