OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 16, Iss. 5 — May. 1, 1999
  • pp: 774–780

Phase sensitivity of a nonlinear Bragg grating response under bidirectional illumination

Yu. A. Logvin and V. M. Volkov  »View Author Affiliations


JOSA B, Vol. 16, Issue 5, pp. 774-780 (1999)
http://dx.doi.org/10.1364/JOSAB.16.000774


View Full Text Article

Enhanced HTML    Acrobat PDF (637 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The response of a nonlinear Bragg grating under bidirectional illumination is studied. By analytical and numerical techniques it is found that the threshold for bistability, pulsation development, and spatial transverse instability is strongly influenced by the phase difference between fields incident from opposite directions. Breakup of pulsations that are symmetrical for both directions into nonsymmetrical pulsations is demonstrated. Solutions for focusing and defocusing nonlinearities are found to be related by means of changes in phase of the incident wave. A change of phase of π may lead to the emergence of a regular spatiotemporal light structure or may cause a transverse static pattern to become turbulent.

© 1999 Optical Society of America

OCIS Codes
(050.2770) Diffraction and gratings : Gratings
(190.1450) Nonlinear optics : Bistability
(190.3100) Nonlinear optics : Instabilities and chaos

Citation
Yu. A. Logvin and V. M. Volkov, "Phase sensitivity of a nonlinear Bragg grating response under bidirectional illumination," J. Opt. Soc. Am. B 16, 774-780 (1999)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-16-5-774


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. B. J. Eggleton, R. E. Slusher, C. M. de Sterke, P. A. Krug, and J. E. Sipe, “Bragg grating solitons,” Phys. Rev. Lett. 76, 1627–1630 (1996). [CrossRef] [PubMed]
  2. B. J. Eggleton, C. M. de Sterke, and R. E. Slusher, “Nonlinear pulse propagation in Bragg gratings,” J. Opt. Soc. Am. B 14, 2980–2993 (1997). [CrossRef]
  3. D. Taverner, N. G. R. Broderick, D. J. Richardson, R. I. Laming, and M. Ibsen, “Nonlinear self-switching and multiple gap-soliton formation in a fiber Bragg grating,” Opt. Lett. 23, 328–330 (1998). [CrossRef]
  4. D. Taverner, N. G. R. Broderick, D. J. Richardson, M. Ibsen, and R. I. Laming, “All-optical AND gate based on coupled gap-soliton formation in a fiber Bragg grating,” Opt. Lett. 23, 259–261 (1998). [CrossRef]
  5. D. Campi, C. Coriasso, A. Stano, L. Faustini, C. Cacciatore, C. Rigo, and G. Meneghini, “Nonlinear contradirectional coupler,” Appl. Phys. Lett. 72, 537–539 (1998). [CrossRef]
  6. N. D. Sankey, D. F. Prelewitz, and T. G. Brown, “All-optical switching in a nonlinear periodic structures,” Appl. Phys. Lett. 60, 1427–1429 (1992). [CrossRef]
  7. C. J. Herbert and M. S. Malcuit, “Optical bistability in nonlinear periodic structures,” Opt. Lett. 18, 1783–1785 (1993). [CrossRef] [PubMed]
  8. J. He, M. Cada, M.-A. Dupertuis, D. Martin, F. Morier-Genoud, C. Rolland, and A. J. Springthorpe, “All-optical bistable switching and signal regeneration in a semiconductor layered distributed-feedback/Fabry–Perot structure,” Appl. Phys. Lett. 63, 866–868 (1993). [CrossRef]
  9. H. G. Winful, J. H. Marburger, and E. Garmire, “Theory of bistability in nonlinear distributed feedback structures,” Appl. Phys. Lett. 35, 379–381 (1979). [CrossRef]
  10. H. G. Winful and G. D. Cooperman, “Self-pulsing and chaos in distributed feedback bistable optical devices,” Appl. Phys. Lett. 40, 298–300 (1982). [CrossRef]
  11. H. G. Winful, R. Zamir, and S. Feldman, “Modulation instability in nonlinear periodic structures: implications for ‘gap solitons,’” Appl. Phys. Lett. 58, 1001–1003 (1991). [CrossRef]
  12. C. M. de Sterke and J. E. Sipe, “Switching dynamics of finite periodic nonlinear media: a numeric study,” Phys. Rev. A 42, 2858–2869 (1990). [CrossRef] [PubMed]
  13. W. Chen and D. L. Mills, “Gap solitons and the nonlinear optical response of superlattices,” Phys. Rev. Lett. 58, 160–163 (1987). [CrossRef] [PubMed]
  14. D. N. Christodoulides and R. I. Joseph, “Slow Bragg solitons in nonlinear periodic structures,” Phys. Rev. Lett. 62, 1746–1749 (1989). [CrossRef] [PubMed]
  15. A. B. Aceves and S. Wabnitz, “Self-induced transparency solitons in nonlinear refractive periodic media,” Phys. Lett. A 141, 37–42 (1989). [CrossRef]
  16. J. Feng and F. K. Kneubühl, “Solitons in a periodic structure with Kerr nonlinearity,” IEEE J. Quantum Electron. 29, 590–597 (1993). [CrossRef]
  17. C. M. de Sterke and J. E. Sipe, in Progress in Optics, E. Wolf, ed. (Elsevier, Amsterdam, 1994), Vol. XXXIII, p. 203.
  18. S. Radic, N. Georges, and G. P. Agrawal, “Analysis of nonuniform nonlinear distributed feedback structures: generalized transfer matrix method,” IEEE J. Quantum Electron. 31, 1326–1336 (1995). [CrossRef]
  19. C. Conti, S. Trillo, and G. Assanto, “Trapping of slowly moving or stationary two-color gap solitons,” Opt. Lett. 23, 334–336 (1998). [CrossRef]
  20. J. B. Geddes, R. A. Indik, J. V. Moloney, and W. J. Firth, “Hexagons and squares in a passive nonlinear optical system,” Phys. Rev. A 50, 3471–3485 (1994). [CrossRef] [PubMed]
  21. H. Kogelnik and C. V. Shank, “Coupled-wave theory of distributed feedback lasers,” J. Appl. Phys. 43, 2327–2335 (1972). [CrossRef]
  22. I. S. Gradstein and I. M. Ryzhik, Tables of Integrals, Sums, Series and Products (Nauka, Moscow, 1971).
  23. M. Wegener and C. Klingshirn, “Self-oscillations of an induced absorber (CdS) in a hybrid ring resonator,” Phys. Rev. A 35, 1740–1752 (1987). [CrossRef] [PubMed]
  24. I. Galbraith and H. Haug, “Spatio-temporal chaos in a ring cavity,” J. Opt. Soc. Am. B 4, 1116–1123 (1987). [CrossRef]
  25. Yu. A. Logvin and A. M. Samson, “Map limit dynamics of the chain of optically bistable thin films,” Opt. Commun. 96, 107–112 (1992); Yu. A. Logvin, A. M. Samson, and V. M. Volkov, “Spatio-temporal light structures in a chain of bistable two-level medium thin films,” Solitons Chaos Fractals 4, 1451–1460 (1994). [CrossRef]
  26. T. Peschel, U. Peschel, and F. Lederer, “Bistability and symmetry breaking in distributed coupling of counterpropagating beams into nonlinear waveguides,” Phys. Rev. A 50, 5153–5163 (1994). [CrossRef] [PubMed]
  27. I. V. Babushkin, Yu. A. Logvin, and N. A. Loiko, “Symmetry breaking bifurcation in light dynamics of two bistable thin films,” Kvantovaya Elekron. (Moscow) 25, 110–115 (1998) [Quantum Electron. 28, 105–109 (1998)]. [CrossRef]
  28. Yu. A. Logvin, “Nonreciprocal optical patterns due to symmetry breaking,” Phys. Rev. A 57, 1219–1222 (1998). [CrossRef]
  29. J. Zhon, M. Cada, J. He, and T. Makino, “Analysis and design of combined distributed feedback/Fabry Perot structures for surface emitting semiconductor lasers,” IEEE J. Quantum Electron. 32, 417–423 (1996). [CrossRef]
  30. A. A. Afanas’ev, V. M. Volkov, and T. S. Efendiev, “Spectrum of the transverse modes of a laser with static distributed feedback by a phase grating,” Kvantovaya Elektron. (Moscow) 24, 528–530 (1997) [Quantum Electron. 27, 514–516 (1997)]. [CrossRef]
  31. Yu. A. Logvin, B. A. Samson, A. A. Afanas’ev, A. M. Samson, and N. A. Loiko, “Triadic Hopf-static structures in two-dimensional optical pattern formation,” Phys. Rev. E 54, R4548–R4551 (1996). [CrossRef]
  32. Yu. A. Logvin, T. Ackemann, and W. Lange, “Winking hexagons,” Europhys. Lett. 38, 583–588 (1997). [CrossRef]
  33. A. De Wit, D. Lima, G. Dewel, and P. Borckmans, “Spatio-temporal dynamics near a codimension-two point,” Phys. Rev. E 54, 261–271 (1996). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited