Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Electromagnetically induced transparency over spectral hole-burning temperature in a rare-earth–doped solid

Not Accessible

Your library or personal account may give you access

Abstract

We have observed electromagnetically induced transparency (EIT) in rare-earth Pr3+-doped Y2SiO5 over the spectral hole-burning temperature. The transmission of the probe laser beam is increased by a factor of exp(1.4) at 12 K when a coupling laser of 1.2 kW/cm2 is applied to the system. The observation of EIT over the spectral hole-burning temperature in a rare-earth–doped solid represents important progress toward high-density echo-based optical memories at higher temperatures.

© 1999 Optical Society of America

Full Article  |  PDF Article
More Like This
Frequency-selective time-domain optical data storage by electromagnetically induced transparency in a rare-earth-doped solid

B. S. Ham, M. S. Shahriar, M. K. Kim, and P. R. Hemmer
Opt. Lett. 22(24) 1849-1851 (1997)

Observations of self-induced ultraslow light in a persistent spectral hole burning medium

J. Hahn and B. S. Ham
Opt. Express 16(21) 16723-16728 (2008)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved