OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 16, Iss. 5 — May. 1, 1999
  • pp: 805–811

Experimental demonstration of data erasure for time-domain optical memories

T. R. Dyke, M. J. Sellars, G. J. Pryde, N. B. Manson, U. Elman, and S. Kröll  »View Author Affiliations


JOSA B, Vol. 16, Issue 5, pp. 805-811 (1999)
http://dx.doi.org/10.1364/JOSAB.16.000805


View Full Text Article

Enhanced HTML    Acrobat PDF (212 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Data erasure is considered an essential requirement for a practical optical time-domain memory, and it requires that the laser used have very good frequency stability. Such a laser is developed for this work, and data erasure is demonstrated with a sample of YSiO5:Eu3+ for write/rewrite pulse sequences of up to a duration of 100 µs. This is two orders of magnitude longer than had been achieved previously. Phase-sensitive detection is introduced and is shown to be invaluable for monitoring the write, rewrite, and read processes.

© 1999 Optical Society of America

OCIS Codes
(030.1670) Coherence and statistical optics : Coherent optical effects
(160.5690) Materials : Rare-earth-doped materials
(210.0210) Optical data storage : Optical data storage
(210.4680) Optical data storage : Optical memories

Citation
T. R. Dyke, M. J. Sellars, G. J. Pryde, N. B. Manson, U. Elman, and S. Kröll, "Experimental demonstration of data erasure for time-domain optical memories," J. Opt. Soc. Am. B 16, 805-811 (1999)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-16-5-805


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. E. Moerner, Persistent Spectral Hole-Burning: Science and Applications (Springer, New York, 1988).
  2. R. W. Equal, Y. Sun, R. L. Cone, and R. M. Macfarlane, “Ultraslow optical dephasing in Eu3+:Y2SiO5,”Phys. Rev. Lett. 72, 2179–2182 (1994); R. L. Cone, R. W. Equal, Y. Sun, R. M. Macfarlane, and R. Hutchenson, “Ultraslow dephasing and dephasing mechanisms in rare earth materials for optical data storage,” Laser Phys. 5, 573–575 (1995). [CrossRef]
  3. R. Yano, M. Mitsunaga, and N. Uesugi, “Ultralong optical dephasing time in Eu3+:Y2SiO5,”Opt. Lett. 16, 1884–1892 (1991); R. Yano, M. Mitsunaga, and N. Uesugi, “Nonlinear laser spectroscopy of Eu3+:Y2SiO5 and its application to time-domain optical memory,” J. Opt. Soc. Am. B 9, 992–997 (1992). [CrossRef] [PubMed]
  4. A. Szabo, “Frequency selective optical memory,” U.S. patent 3, 896, 420 (July 22, 1975); G. Castro, D. Haarer, R. M. Macfarlane, and H. P. Trommsdorff, “Frequency selective optical data storage,” U.S. patent 4, 101, 976 (July 18, 1978).
  5. T. W. Mossberg, “Time domain frequency-selective optical data storage,” Opt. Lett. 7, 77–79 (1982). [CrossRef] [PubMed]
  6. W. R. Babbitt and T. W. Mossberg, “Time-domain frequency-selective optical data storage in a solid-state material,” Opt. Commun. 65, 185–188 (1988); W. R. Babbitt and T. W. Mossberg, “Quasi-two-dimensional time-domain color memories: process limitations and potentials,” J. Opt. Soc. Am. B 11, 1948–1953 (1994). [CrossRef]
  7. S. Kröll and P. Tidlund, “Recording density limit of photon-echo optical storage with high-speed writing and reading,” Appl. Opt. 32, 7233–7242 (1993). [CrossRef] [PubMed]
  8. N. N. Akhmediev, “Information erasing in the phenomenon of long lived photon echo,” Opt. Lett. 15, 1035–1037 (1990). [CrossRef] [PubMed]
  9. M. Arend, E. Block, and S. R. Hartmann, “Random access processing of optical memory use of photon-echo interference effects,” Opt. Lett. 18, 1789–1791 (1993). [CrossRef] [PubMed]
  10. U. Elman, B. Luo, and S. Kröll, “Influence of laser phase and frequency fluctuations on photon-echo data erasure,” J. Opt. Soc. Am. B 13, 1905–1914 (1996). [CrossRef]
  11. J. Huang, J. M. Zhang, A. Lezama, and T. W. Mossberg, “Excess dephasing in photon-echo experiments arising from excitation-induced electronic level shifts,” Phys. Rev. Lett. 63, 78–81 (1989); J. Huang, J. M. Zhang, and T. W. Mossberg, “Excitation-induced frequency shifts and frequency-dependent dephasing in Eu3+:Y2O3,” Opt. Commun. 75, 29–32 (1990); S. Kröll, E. Y. Xu, M. K. Kim, M. Mitsunaga, and R. Kachru, “Intensity-dependent photon-echo relaxation in rare-earth-doped crystals,” Phys. Rev. B PRBMDO 41, 11568–11571 (1990); S. Kröll, E. Y. Xu, and R. Kachru, “Influence of excited-state Pr3+ on the relaxation of the Pr3+:YAlO33H41D2 transition,” Phys. Rev. B PRBMDO 44, 30–34 (1991); G. K. Liu and R. L. Cone, “Laser-induced instantaneous spectral diffusion in Tb3+ compounds as observed by photon-echo experiments,” Phys. Rev. B PRBMDO 41, 6193–6200 (1990); M. Mitsunaga, T. Takagahara, R. Yano, and N. Uesugi, “Excitation-induced frequency shift probed by stimulated photon echoes,” Phys. Rev. Lett. PRLTAO 68, 3216–3219 (1992); X. A. Shen and R. Kachru, “Optimization of time-domain storage density in the presence of excitation-induced spectral diffusion,” Appl. Opt. APOPAI 36, 6692–6695 (1997). [CrossRef] [PubMed]
  12. M. J. Sellars, R. S. Meltzer, P. T. H. Fisk, and N. B. Manson, “Time-resolved ultranarrow optical hole burning of a crystalline solid: Y2O3:Eu3+,” J. Opt. Soc. Am. B 11, 1468–1473 (1994). [CrossRef]
  13. R. W. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B: Photophys. Laser Chem. 31, 97–105 (1983). [CrossRef]
  14. T. Muramoto, S. Nakanishi, T. Endo, and T. Hashi, “Studies of phase characteristics of various photon echoes with a phase sensitive detection method,” Opt. Commun. 36, 409–414 (1981). [CrossRef]
  15. M. Fujita, H. Nakatsuka, H. Nakanishi, and M. Matsuoka, “Backward echo in two-level systems,” Phys. Rev. Lett. 42, 974–977 (1979); W. H. Hesselink and D. A. Wiersma, “Picosecond photon echoes stimulated from an accumulated grating,” Phys. Rev. Lett. 43, 1991–1994 (1979). [CrossRef]
  16. J. Dirscherl, B. Neizert, T. Wegener, and H. Walther, “A dye laser spectrometer for high resolution spectroscopy,” Opt. Commun. 91, 131–139 (1992); N. M. Sampas, E. K. Gustafson, and R. L. Byer, “Long-term stability of two diode-laser-pumped nonplanar ring laser independently stabilized to two Fabry–Perot interferometers,” Opt. Lett. 18, 947–949 (1993); A. N. Luiten, A. G. Mann, M. E. Costa, and D. G. Blair, “Power stabilized cryogenic sapphire oscillator,” IEEE Trans. Instrum. Meas. IEIMAO 44, 132–135 (1995); S. Seel, R. Storz, G. Ruoso, J. Mlynek, and S. Schiller, “Cryogenic optical resonators: a new tool for frequency stabilization at the 1-Hz level,” Phys. Rev. Lett. PRLTAO 78, 4741–4744 (1997). [CrossRef] [PubMed]
  17. J. M. Zhang, D. J. Gauthier, J. Huang, and T. W. Mossberg, “Use of phase-noisy laser fields in the storage of optical pulse shapes in inhomogeneously broadened absorbers,” Opt. Lett. 16, 103–105 (1991); X. A. Shen, Y. S. Bai, and R. Kachru, “Reprogrammable optical matched filter for biphase-coded pulse compression,” Opt. Lett. 17, 1079–1081 (1992); X. A. Shen and R. Kachru, “Use of biphase-coded pulses for wideband data storage in time-domain optical memories,” Appl. Opt. APOPAI 32, 3149–3151 (1993); Y. S. Bai and R. Kachru, “Coherent time-domain data storage with spread spectrum generated by random biphase shifting,” Opt. Lett. OPLEDP 17, 1189–1191 (1993). [CrossRef] [PubMed]
  18. X. A. Shen, R. Hartman, and R. Kachru, “Impulse-equivalent time domain optical memory,” Opt. Lett. 21, 833–835 (1996); X. A. Shen and R. Kachru, “Experimental demonstration of impulse-equivalent time domain optical memory,” Opt. Lett. 21, 2020–2022 (1996). [CrossRef] [PubMed]
  19. M. J. Sellars, T. R. Dyke, G. J. Pryde, and N. B. Manson, “Time-domain optical memories using rare earth ions,” Mater. Sci. Forum (to be published).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited