OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 16, Iss. 5 — May. 1, 1999
  • pp: 848–860

Quantum theory of the vibronic solid-state laser

B. Ratajska-Gadomska and W. Gadomski  »View Author Affiliations

JOSA B, Vol. 16, Issue 5, pp. 848-860 (1999)

View Full Text Article

Enhanced HTML    Acrobat PDF (404 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A quantum-mechanical description of a vibronic multimode standing-wave transition-metal ion laser is presented. The impurity ion levels are coupled both by the radiation field and by the phonons of the host lattice. A dynamic Heisenberg–Langevin set of equations for the material system and the photon and phonon operators, including radiative and nonradiative damping terms and quantum-stochastic forces, has been derived. The numerical solutions of those equations show the crucial role of the phonons in the laser dynamics. The competition between the photons and the phonons leads to regular stable self-pulsation for certain sets of parameters.

© 1999 Optical Society of America

OCIS Codes
(140.3580) Lasers and laser optics : Lasers, solid-state
(140.3600) Lasers and laser optics : Lasers, tunable
(140.5680) Lasers and laser optics : Rare earth and transition metal solid-state lasers
(190.3100) Nonlinear optics : Instabilities and chaos
(270.3430) Quantum optics : Laser theory

B. Ratajska-Gadomska and W. Gadomski, "Quantum theory of the vibronic solid-state laser," J. Opt. Soc. Am. B 16, 848-860 (1999)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Hong Fu and H. Haken, “Semiclassical dye-laser equations and the unidirectional single-frequency operation,” Phys. Rev. A 36, 4802 (1987); “Multichromatic operations in cw dye lasers,” Phys. Rev. Lett. 60, 2614 (1988). [CrossRef] [PubMed]
  2. S. A. Kovalenko, “Quantum intensity fluctuations in multimode cw lasers and maximum sensitivity of intracavity laser spectroscopy,” Sov. J. Quantum Electron. 11, 759 (1981). [CrossRef]
  3. M. G. Raymer, Z. Deng, and M. Beck, “Strong-field dynamics of a multimode, standing-wave dye laser,” J. Opt. Soc. Am. B 5, 1588 (1988). [CrossRef]
  4. M. Beck, I. McMackin, and M. G. Raymer, “Transition from quantum-noise-driven dynamics to deterministic dynamics in a multimode laser,” Phys. Rev. A 40, 2410 (1989). [CrossRef] [PubMed]
  5. S. E. Hodges, M. Munroe, J. Cooper, and M. G. Raymer, “Multimode laser model with coupled cavities and quantum noise,” J. Opt. Soc. Am. B 14, 191 (1997). [CrossRef]
  6. D. E. McCumber, “Einstein relations connecting broadband emission and absorption spectra,” Phys. Rev. A 136, 954 (1964). [CrossRef]
  7. J. C. Walling, O. G. Peterson, H. P. Jenssen, R. C. Morris, and E. W. O’Dell, “Tunable alexandrite lasers,” IEEE J. Quantum Electron. QE-16, 1302 (1980). [CrossRef]
  8. J. C. Walling, “Tunable paramagnetic solid state lasers,” in Tunable Lasers, L. F. Mollenauer and J. C. White, eds. (Springer-Verlag, Berlin, 1987), p. 344.
  9. J. C. Walling, D. F. Heller, H. Samelson, D. J. Harter, J. A. Pete, and R. C. Morris, “Tunable alexandrite lasers: development and performance,” IEEE J. Quantum Electron. QE-21, 1568 (1985). [CrossRef]
  10. W. S. Mashkievitch, Kinetic Theory of Lasers (Nauka, Moscow, 1971; in Russian).
  11. S. G. Demos, J. M. Buchert, and R. R. Alfano, “Time resolved nonequilibrium phonon dynamics in the nonradiative decay of photoexcited forsterite,” Appl. Phys. Lett. 61, 660 (1992); S. G. Demos and R. R. Alfano, “Subpicosecond time-resolved Raman investigation of optical phonon modes in Cr-doped forsterite,” Phys. Rev. B 52, 987 (1995). [CrossRef]
  12. S. K. Gayen, W. B. Wang, V. Petricević, and R. R. Alfano, “Nonradiative transition dynamics in alexandrite,” Appl. Phys. Lett. 49, 437 (1986); S. K. Gayen, W. B. Wang, V. Petricević, K. M. Yoo, and R. R. Alfano, “Picosecond excite-and-probe absorption measurement of the intra-2EgE3/2-state vibrational relaxation time in Ti3+:Al2O3,” Appl. Phys. Lett. 50, 1494 (1987); S. K. Gayen, W. B. Wang, V. Petricević, R. Dorsinville, and R. R. Alfano, “Picosecond excite-and-probe absorption measurement of the 4T2 state nonradiative lifetime in ruby,” Appl. Phys. Lett. APPLAB 47, 454 (1985). [CrossRef]
  13. R. Englman, Non-Radiative Decay of Ions and Molecules in Solids (North-Holland, Amsterdam, 1979).
  14. M. H. L. Pryce, “Interaction of vibrations with electrons at point defects,” in Phonons in Perfect Lattices and in Lattices with Point Imperfections, R. W. H. Sevenson, ed. (Oliver & Boyd, Edinburgh, 1966).
  15. H. Haken, Light (North-Holland, Amsterdam, 1981), Vol. 1; Quantum Field Theory of Solids (North-Holland, Amsterdam, 1976).
  16. W. Gadomski and B. Ratajska-Gadomska, “Parametric bistable resonance in coherent Raman scattering in crystals,” Phys. Rev. A 34, 1277 (1986). [CrossRef] [PubMed]
  17. P. Meystre and M. Sargent III, Elements of Quantum Optics (Springer-Verlag, Berlin, 1991).
  18. W. Gadomski and B. Gadomska, “Self-pulsations in phonon-assisted lasers,” J. Opt. Soc. Am. B 15, 2689 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited