OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 16, Iss. 5 — May. 1, 1999
  • pp: 871–877

Propagation and self-pumped phase conjugation of femtosecond laser pulses in BaTiO3

Changxi Yang  »View Author Affiliations

JOSA B, Vol. 16, Issue 5, pp. 871-877 (1999)

View Full Text Article

Enhanced HTML    Acrobat PDF (217 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We investigate the properties of propagation and self-pumped phase conjugation (SPPC) of 90-fs laser pulses at 450 nm in BaTiO3. Femtosecond SPPC in BaTiO3, both in air and in immersion oil, is explored; it is demonstrated that femtosecond self-pumped phase-conjugate pulses are generated from all crystallographic faces of BaTiO3 in immersion oil. We measure the duration of the pulses after propagation and SPPC by using electric field cross correlation. The duration of SPPC increases as the incident angle increases. Because of the partial compensation of the negative angular dispersion, the self-pumped phase-conjugate pulse undergoes a total dispersion smaller than that of the transmitted pulse. By managing the angular dispersion of the femtosecond phase conjugator, we can control the total dispersion and thus the duration of the self-pumped phase-conjugate pulses. The experimental results agree with the theoretical simulations.

© 1999 Optical Society of America

OCIS Codes
(190.5040) Nonlinear optics : Phase conjugation
(190.5330) Nonlinear optics : Photorefractive optics
(190.5530) Nonlinear optics : Pulse propagation and temporal solitons
(320.2250) Ultrafast optics : Femtosecond phenomena
(320.5520) Ultrafast optics : Pulse compression
(320.7110) Ultrafast optics : Ultrafast nonlinear optics

Changxi Yang, "Propagation and self-pumped phase conjugation of femtosecond laser pulses in BaTiO3," J. Opt. Soc. Am. B 16, 871-877 (1999)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Cronin-Golomb, B. Fisher, S. O. White, and A. Yariv, “Theory and applications of four-wave mixing in photorefractive media,” IEEE J. Quantum Electron. 20, 12 (1984). [CrossRef]
  2. P. Yeh, “Two-wave mixing in nonlinear media,” IEEE J. Quantum Electron. 25, 484 (1989), and references therein. [CrossRef]
  3. G. C. Valley, “Short-pulse grating formation in photorefractive materials,” IEEE J. Quantum Electron. 19, 1637 (1983). [CrossRef]
  4. N. Huot, J. M. C. Jonathan, G. Roosen, and D. Rytz, “Two-wave mixing in photorefractive BaTiO3:Rh at 1.06 μm in the nanosecond regime,” Opt. Lett. 22, 976 (1997). [CrossRef] [PubMed]
  5. N. Barry and M. I. Damzen, “Two-beam coupling and response-time measurements in barium titanate using high-intensity laser pulses,” J. Opt. Soc. Am. B 9, 1488 (1992). [CrossRef]
  6. L. K. Lam, T. Y. Chang, J. Feinberg, and R. W. Hellwarth, “Photorefractive-induced gratings formed by nanosecond optical pulses in BaTiO3,” Opt. Lett. 10, 475 (1981). [CrossRef]
  7. A. L. Smirl, G. C. Valley, R. A. Mullen, K. Bohnert, C. D. Mire, and T. F. Boggess, “Picosecond photorefractive effect in BaTiO3,” Opt. Lett. 12, 501 (1987). [CrossRef] [PubMed]
  8. A. L. Smirl, K. Bohnert, G. C. Valley, R. A. Mullen, and T. F. Boggess, “Formation, decay, and erasure of photorefractive gratings written in barium titanate by picosecond pulses,” J. Opt. Soc. Am. B 6, 606 (1989). [CrossRef]
  9. J. M. C. Jonathan, G. Roosen, and Ph. Roussignol, “Time-resolved buildup of a photorefractive grating induced in Bi12SiO20 by picosecond light pulses,” Opt. Lett. 13, 224 (1988). [CrossRef] [PubMed]
  10. X. S. Yao, V. Dominic, and J. Feinberg, “Theory of beam coupling and pulse shaping of mode-locked laser pulses in a photorefractive crystal,” J. Opt. Soc. Am. B 7, 234 (1990). [CrossRef]
  11. X. Yao and J. Feinberg, “Photorefractive pulse coupling in frequency domain,” Opt. Lett. 18, 104 (1993). [CrossRef] [PubMed]
  12. V. Dominic, X. S. Yao, R. M. Pierce, and J. Feinberg, “Measuring the coherence length of mode-locked laser pulses in real time,” Appl. Phys. Lett. 56, 521 (1990). [CrossRef]
  13. H. Okamura and K. Kuroda, “Two-dimensional measurement of the temporal correlation function of picosecond light pulses recorded in a photorefractive crystal,” J. Opt. Soc. Am. B 14, 860 (1997). [CrossRef]
  14. L. H. Acioli, M. Ulman, E. P. Ippen, J. G. Fujimoto, H. Kong, B. S. Chen, and M. Cronin-Golomb, “Femtosecond temporal encoding in barium titanate,” Opt. Lett. 16, 1984 (1991). [CrossRef] [PubMed]
  15. A. Brignon, J.-P. Huignard, M. H. Garrett, and I. Mnushkina, “Self-pumped phase conjugation in rhodium-doped BaTiO3 with 1.06-μm nanosecond pulses,” Opt. Lett. 22, 215 (1997). [CrossRef] [PubMed]
  16. B. Monson, G. J. Salamo, A. G. Mott, M. J. Miller, E. J. Sharp, W. W. Clark III, G. L. Wood, and R. R. Neurgaonkar, “Self-pumped phase conjugation with nanosecond pulses in strontium barium niobate,” Opt. Lett. 15, 12 (1990). [CrossRef] [PubMed]
  17. M. J. Damzen, N. P. Barry, and M. Buttinger, “High-intensity effects in self-pumped photorefractive phase conjugation using nanosecond pulses,” J. Mod. Opt. 42, 2051 (1995). [CrossRef]
  18. M. Cronin-Golomb, J. Paslaski, and A. Yariv, “Vibration resistance, short coherence length operation, and mode-locked pumping in a passive phase conjugate mirror,” Appl. Phys. Lett. 47, 1131 (1985). [CrossRef]
  19. R. K. Jain and K. Stenersen, “Picosecond pulse operation of a dye laser containing a phase conjugate mirror,” Opt. Lett. 9, 546 (1984). [CrossRef] [PubMed]
  20. H. F. Yau, P. J. Wang, E. Y. Pan, J. Chen, and J. Y. Chang, “Self-pumped phase conjugation with picosecond and femtosecond pulses using BaTiO3,” Opt. Commun. 135, 331–336 (1997). [CrossRef]
  21. H. F. Yau, P. J. Wang, E. Y. Pan, and J. Chen, “Self-pumped phase conjugation with femtosecond pulses by use of BaTiO3,” Opt. Lett. 21, 1168–1170 (1996). [CrossRef] [PubMed]
  22. H. Wang, N. Yoshikawa, S. Yoshikado, and T. Aruga, “Mutually pumped phase conjugator with a rainbow configuration in BaTiO3:Ce crystal using nanosecond pulses,” Opt. Lett. 21, 561 (1996). [CrossRef] [PubMed]
  23. S. Ashihara, O. Matoba, T. Shimura, K. Kuroda, J. Kato, and I. Yamaguchi, “Mutually pumped phase conjugators with picosecond pulses,” J. Opt. Soc. Am. B 15, 1971 (1998). [CrossRef]
  24. A. Yariv, D. Fekete, and D. M. Pepper, “Compensation for channel dispersion by nonlinear optical phase conjugation,” Opt. Lett. 4, 52 (1979). [CrossRef] [PubMed]
  25. J.-C. Diels and W. Rudolph, Ultrashort Laser Pulse Phenomena: Fundamentals, Techniques, and Applications on a Femtosecond Time Scale (Academic, San Diego, Calif., 1995), Chap. 2.
  26. J. C. Diels, J. J. Fontaine, L. C. McMichael, and F. Simoni, “Control and measurement of ultrashort pulse shapes (in amplitude and phase) with femtosecond accuracy,” Appl. Opt. 24, 1270 (1985). [CrossRef] [PubMed]
  27. R. Trebino, K. W. Delong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbugel, and B. A. Richman, “Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolve optical gating,” Rev. Sci. Instrum. 68, 3277 (1997), and references therein. [CrossRef]
  28. R. H. J. Knop and R. Spik, “Phase-sensitive interferometry with ultrashort optical pulses,” Rev. Sci. Instrum. 66, 5459 (1995). [CrossRef]
  29. R. M. Brubaker, Q. N. Wang, D. D. Nolte, E. S. Harmon, and M. R. Melloch, “Steady-state four-wave mixing in photorefractive quantum wells with femtosecond pulses,” J. Opt. Soc. Am. B 11, 1038 (1994). [CrossRef]
  30. A. M. Levine, E. Ozizmir, R. Trebino, C. C. Hayden, A. M. Johson, and K. L. Tokuda, “Induced-grating autocorrelation of ultrashort pulses in a slowly responding medium,” J. Opt. Soc. Am. B 11, 1609 (1994). [CrossRef]
  31. E. T. Nibbering, M. A. Franco, B. S. Prade, G. Grillon, J. P. Chambaret, and A. Mysyrowicz, “Spectral determination of the amplitude and the phase of intense ultrashort optical pulses,” J. Opt. Soc. Am. B 13, 317 (1996). [CrossRef]
  32. O. Buccafusca, X. Chen, W. J. Walecki, and A. L. Smirl, “Measurement of the ultrafast polarization dynamics of weak four-wave mixing signals by dual-channel femtosecond spectral interferometry,” J. Opt. Soc. Am. B 15, 1218 (1998). [CrossRef]
  33. J. A. Armstrong, “Measurement of picosecond laser pulse widths,” Appl. Phys. Lett. 10, 16 (1967). [CrossRef]
  34. K. Naganuma, K. Mogi, and H. Yamada, “General method for ultrashort light pulse chirp measurement,” IEEE J. Quantum Electron. 25, 1225 (1989). [CrossRef]
  35. R. M. Brubaker, Y. Ding, D. D. Nolte, M. R. Melloch, and A. M. Weiner, “Bandwidth-limited diffraction of femtosecond pulses from photorefractive quantum wells,” IEEE J. Quantum Electron. 33, 2150 (1997). [CrossRef]
  36. Y. Ding, I. Lahiri, D. D. Nolte, G. J. Dunning, and D. M. Pepper, “Electric-field correlation of femtosecond pulses by use of a photoelectromotive-force detector,” J. Opt. Soc. Am. B 15, 2013 (1998). [CrossRef]
  37. L. Lepetit, G. Cheriau, and M. Joffre, “Linear techniques of the phase measurement by femtosecond spectral interferometry for application spectroscopy,” J. Opt. Soc. Am. B 12, 2467 (1995). [CrossRef]
  38. C. Yang, K. Minoshima, K. Seta, H. Matsumoto, and Y. Zhu, “Generation of self-pumped phase conjugation from the −c-face of BaTiO3 with femtosecond pulses,” Appl. Opt. 38, 1704 (1999). [CrossRef]
  39. M. Cronin-Golomb, “Almost all transmission grating self-pumped phase-conjugate mirrors are equivalent,” Opt. Lett. 15, 897 (1990). [CrossRef] [PubMed]
  40. C. Yang, “Dispersion compensation for femtosecond self-pumped phase conjugator,” Opt. Lett. 24, 31 (1999). [CrossRef]
  41. J. Feinberg, “Self-pumped, continuous-wave phase conjugator using internal reflection,” Opt. Lett. 7, 486 (1982). [CrossRef] [PubMed]
  42. G. P. Agrawal, Nonlinear Fiber Optics (Academic, San Diego, Calif., 1989), Chaps. 2 and 3.
  43. K. Buse, S. Riehemann, S. Loheide, H. Hesse, F. Mersch, and E. Kratzig, “Refractive indices of the single domain BaTiO3 for different wavelengths and temperature,” Phys. Status Solidi A 135, K87 (1993). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited