OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 16, Iss. 9 — Sep. 1, 1999
  • pp: 1431–1438

Temporal and angular analysis of nonlinear scattering in carbon-black suspensions in water and ethanol

Olivier Durand, Valérie Grolier-Mazza, and Robert Frey  »View Author Affiliations


JOSA B, Vol. 16, Issue 9, pp. 1431-1438 (1999)
http://dx.doi.org/10.1364/JOSAB.16.001431


View Full Text Article

Enhanced HTML    Acrobat PDF (292 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The physical origin of the nonlinear scattering of light induced by the focusing of intense laser pulses onto carbon-black suspensions (CBS’s) is discussed through the interpretation of pump–probe experiments and angular analyses. Pump–probe experiments are carried out with a time delay ranging from picoseconds to the milliseconds, and angular analyses are performed in both the picosecond and the nanosecond regimes. The comparison between pump–probe experimental results obtained from solutions of CBS in water, CBS in ethanol, and indoaniline in ethanol shows that the scattering phenomenon is associated with the carbon particles within the first nanoseconds, the influence of the solvent being significant only at much longer times through thermal relaxation processes. Thermodynamical considerations confirm these experiments and clearly show that a vaporized or (and) ionized carbon particle may be an efficient scattering center for visible wavelengths. The measurements of time-integrated angular scattering intensities for 10-ns-duration pulses demonstrate the influence of multiple scattering at high laser fluences. Time-resolved angular scattering experiments show the existence of a shock wave during the growth of scattering centers created by the percussive picosecond-duration pump pulse.

© 1999 Optical Society of America

OCIS Codes
(190.3970) Nonlinear optics : Microparticle nonlinear optics
(190.4400) Nonlinear optics : Nonlinear optics, materials
(190.4870) Nonlinear optics : Photothermal effects
(190.5940) Nonlinear optics : Self-action effects
(290.5850) Scattering : Scattering, particles

Citation
Olivier Durand, Valérie Grolier-Mazza, and Robert Frey, "Temporal and angular analysis of nonlinear scattering in carbon-black suspensions in water and ethanol," J. Opt. Soc. Am. B 16, 1431-1438 (1999)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-16-9-1431


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. See, for example, Materials for Optical Limiting, R. Crane, K. Lewis, E. W. Van Stryland, and M. Khoshnevisan, eds., MRS Symp. Proc. 374 (Materials Research Society, Pittsburgh, Pa, 1995).
  2. B. L. Justus, A. L. Huston, and A. J. Camillo, “Broadband thermal optical limiter,” Appl. Phys. Lett. 63, 1483–1485 (1993). [CrossRef]
  3. K. Mansour, E. W. Van Stryland, and M. J. Soileau, “Optical limiting in media with absorbing microparticles,” in Materials for Optical Switches, Isolators, and Limitors, M. J. Soileau, ed., Proc. SPIE 1105, 91–102 (1989). [CrossRef]
  4. F. Fougeanet and J. C. Fabre, “Nonlinear mechanisms in carbon-black suspension in a limiting geometry,” in Materials for Optical Limiting II, R. Sutherland, R. Pachter, P. Hood, D. Hagan, K. Lewis, and J. Perry, eds., MRS Symp. Proc. 479, 293–298 (Materials Research Society, Pittsburgh, Pa, 1995).
  5. K. Mansour, E. W. Van Stryland, and M. S. Soileau, “Optical nonlinearities in carbon black particles,” in Electro-Optical Materials for Switches, Coatings, Sensor Optics, and Detectors, R. Hartmann, M. J. Soileau, and V. K. Varadan, eds., Proc. SPIE 1307, 350–362 (1990). [CrossRef]
  6. K. Mansour, “Nonlinear properties of carbon-black suspensions (ink),” J. Opt. Soc. Am. B 9, 1100–1109 (1992). [CrossRef]
  7. T. Xia, A. Dogariu, K. Mansour, D. J. Hagan, A. A. Said, and E. W. Van Stryland, “Nonlinear optical properties of the inorganic metal cluster,” in Nonlinear Optical Liquids, C. M. Lawson, ed., Proc. SPIE 2853, 142–148 (1996). [CrossRef]
  8. K. M. Nashold, R. A. Brown, D. P. Walter, and R. C. Honey, “Temporal and spatial characterization of optical breakdown in a suspension of small absorbing particles,” in Materials for Optical Switches, Isolators, and Limitors, M. J. Soileau, ed., Proc. SPIE 1105, 78–90 (1989). [CrossRef]
  9. K. M. Nashold and D. P. Walter, “Investigations of optical limiting mechanisms in carbon particle suspensions and fullerene solutions,” J. Opt. Soc. Am. B 12, 1228–1237 (1995). [CrossRef]
  10. C. M. Lawson, G. W. Euliss, and R. R. Michael, “Nanosecond laser-induced cavitation in carbon microparticle suspensions: applications in nonlinear interface switching,” Appl. Phys. Lett. 58, 2195–2197 (1991). [CrossRef]
  11. R. R. Michael and C. M. Lawson, “Nonlinear transmission and reflection at a dielectric–carbon microparticle suspension interface,” Opt. Lett. 17, 1055–1057 (1992). [CrossRef] [PubMed]
  12. R. R. Michael, C. M. Lawson, and G. W. Euliss, “Nanosecond switching in carbon microparticle suspensions,” in Nonlinear Optics III, R. A. Fisher and J. F. Reintjes, eds., Proc. SPIE 1626, 205–216 (1992). [CrossRef]
  13. R. R. Michael and C. M. Lawson, “Nonlinear interface switching in carbon microparticle suspensions,” in Nonlinear and Electro-Optic Materials for Optical Switching, M. J. Soileau, ed., Proc. SPIE 1692, 44–54 (1992). [CrossRef]
  14. C. M. Lawson and R. R. Michael, “Nonlinear reflection at a dielectric-carbon suspension interface: macroscopic theory and experiment,” Appl. Phys. Lett. 64, 2081–2083 (1994). [CrossRef]
  15. K. J. McEwan and P. A. Madden, “Transient grating effects in absorbing colloidal suspensions,” J. Chem. Phys. 11, 8748–8759 (1992). [CrossRef]
  16. H. Löwen and P. A. Madden, “A microscopic mechanism for shock-wave generation in pulsed-laser-heated colloidal suspensions,” J. Chem. Phys. 11, 8760–8766 (1992). [CrossRef]
  17. A. Fein, Z. Kotler, J. Bar-Sagi, S. Jackel, P. Shaier, and B. Zinger, “Nonlinear transmission characteristics of carbon-black suspensions,” Nonlinear Opt. Princ. Mater. Phenom. Devices 11, 277–288 (1995).
  18. D. R. Lide, ed., Handbook of Chemistry and Physics, 72nd ed. (CRC Press, Boca Raton, Fla., 1992).
  19. R. E. Bolz and G. L. Tuve, eds., Handbook of Tables for Applied Engineering Science, 2nd ed. (CRC Press, Cleveland, Oh., 1973).
  20. J. Stone, “Measurement of the absorption of light in low-loss liquids,” J. Opt. Soc. Am. 62, 327–333 (1972). [CrossRef]
  21. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley-Interscience, New York, 1983).
  22. P. Brochard, V. Grolier-Mazza, and R. Cabanel, “Thermal nonlinear refraction in dye solutions: a study of the transient regimes,” J. Opt. Soc. Am. B 14, 405–414 (1997). [CrossRef]
  23. O. Durand, V. Grolier-Mazza, and R. Frey, “Picosecond-resolution study of nonlinear scattering in carbon black suspensions in water and ethanol,” Opt. Lett. 23, 1471–1473 (1998). [CrossRef]
  24. G. Lamb, Hydrodynamics (Dover, New York, 1945).
  25. A. Penzkofer, “Parametrically generated spectra and optical breakdown in H2O and NaCl,” Opt. Commun. 11, 265–269 (1974). [CrossRef]
  26. C. L. Tien and B. L. Drolen, “Thermal radiation in particulate media with dependent and independent scattering,” Ann. Rev. Num. Fluid Mech. Heat Transfer 1, 1–32 (1987). [CrossRef]
  27. H. Schnablegger and O. Glatter, “Sizing of colloidal particles with light scattering: corrections for beginning multiple scattering,” Appl. Opt. 34, 3489–3501 (1995). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited