OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 17, Iss. 10 — Oct. 1, 2000
  • pp: 1671–1677

Energy transfer and upconversion processes in Nd3+-doped GeO2–PbO–Nb2O5 glass

R. Balda, M. Sanz, J. Fernández, and J. M. Fdez-Navarro  »View Author Affiliations


JOSA B, Vol. 17, Issue 10, pp. 1671-1677 (2000)
http://dx.doi.org/10.1364/JOSAB.17.001671


View Full Text Article

Enhanced HTML    Acrobat PDF (178 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The optical properties of Nd3+-doped lead germanate glass of composition (in mol. %) 60GeO225PbO15Nb2O5 have been investigated for several Nd3+ concentrations at various temperatures by steady-state and time-resolved laser spectroscopy. Judd–Ofelt parameters were derived from the absorption spectrum and used to calculate the  4F3/24I11/2 stimulated-emission cross section and the  4F3/2 radiative lifetime. The spectral features of the time-resolved fluorescence line narrowing  4F3/24I9/2 emission spectra obtained under resonant excitation reveal the existence of spectral migration of excitation among the Nd3+ ions. Analysis of the time evolution of the  4F3/24I9/2 narrowed emission showed that the electronic mechanism responsible for the ion–ion interaction can be identified as a dipole–dipole energy-transfer process. Green, orange, and red emissions were observed in this glass under continuous-wave infrared laser excitation and are attributed to transitions from the  4G7/2 level.

© 2000 Optical Society of America

OCIS Codes
(160.5690) Materials : Rare-earth-doped materials
(190.7220) Nonlinear optics : Upconversion
(300.6360) Spectroscopy : Spectroscopy, laser
(300.6500) Spectroscopy : Spectroscopy, time-resolved

Citation
R. Balda, M. Sanz, J. Fernández, and J. M. Fdez-Navarro, "Energy transfer and upconversion processes in Nd3+-doped GeO2–PbO–Nb2O5 glass," J. Opt. Soc. Am. B 17, 1671-1677 (2000)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-17-10-1671


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. J. L. Ribeiro, J. Dexpert-Ghys, B. Piriou, and V. R. Mastelaro, “Structural studies in lead-germanate glasses: EXAFS and vibrational spectroscopy,” J. Non-Cryst. Solids 159, 213–221 (1993). [CrossRef]
  2. J. E. Canale, R. A. Condrate, Sr., K. Nassau, and B. C. Cornilsen, “Characterization of various glasses in the binary PbO–GeO2 and Bi2O3–GeO2 systems,” J. Can. Ceram. Soc. 55, 50–56 (1986).
  3. D. Lezal, J. Pedlíková, and J. Horák, “GeO2–PbO Glassy system for infrared fibers for delivery of Er:YAG laser energy,” J. Non-Cryst. Solids 196, 178–182 (1996). [CrossRef]
  4. J. Wang, J. R. Lincoln, W. S. Brocklesby, R. S. Deol, C. J. Mackechnie, A. Pearson, A. C. Tropper, D. C. Hanna, and D. N. Payne, “Fabrication and optical properties of lead-germanate glasses and a new class of optical fibers doped with Tm3+,” J. Appl. Phys. 73, 8066–8075 (1993). [CrossRef]
  5. Z. Pan, H. Morgan, A. Loper, V. King, B. H. Long, and W. E. Collins, “Infrared to visible upconversion in Er3+-doped lead-germanate glass: effects of Er3+ ion concentration,” J. Appl. Phys. 77, 4688–4692 (1995). [CrossRef]
  6. J. McDougall, D. B. Hollis, and M. J. P. Payne, “The 1.82 μm emission of Tm3+ in germanium-based oxide glass,” Phys. Chem. Glasses 36, 52 (1995).
  7. D. P. Shepherd, D. J. B. Brick, J. Wang, A. C. Tropper, D. C. Hanna, G. Kakarantzas, and P. D. Townsend, “1.9-μm operation of a Tm:lead germanate glass waveguide laser,” Opt. Lett. 19, 954–956 (1994). [CrossRef] [PubMed]
  8. M. Wachtler, A. Speghini, K. Gatterer, H. P. Fritzer, D. Ajò, and M. Bettinelli, “Optical properties of rare-earth ions in lead germanate glasses,” J. Am. Ceram. Soc. 81, 2045–2052 (1998). [CrossRef]
  9. L. A. Riseberg, “Laser-induced fluorescence-line-narrowing spectroscopy of glass:Nd,” Phys. Rev. A 7, 671–678 (1973). [CrossRef]
  10. M. J. Weber, “Laser excited fluorescence spectroscopy in glass,” in Laser Spectroscopy of Solids, W. M. Yen and P. M. Selzer, eds. (Springer-Verlag, Berlin, 1981), pp. 189–239, and references therein.
  11. R. Balda, J. Fernández, J. L. Adam, and M. A. Arriandiaga, “Time-resolved fluorescence line narrowing and energy-transfer studies in a Eu3+-doped fluorophosphate glass,” Phys. Rev. B 54, 12, 076–12, 086 (1996). [CrossRef]
  12. L. D. Merkle, R. C. Powell, and E. E. Freed, “Energy transfer among neodymium ions in glass hosts,” J. Lumin. 24/25, 755–758 (1981). [CrossRef]
  13. L. A. Riseberg, “Temperature dependence of ion-ion energy transfer in Nd:glass by laser-induced line-narrowing techniques,” Solid State Commun. 11, 469–471 (1972). [CrossRef]
  14. T. T. Basiev, Yu K. Voron’ko, S. B. Mirov, and A. M. Prokhorov, “Frequency selection of Nd3+ ions in glass excited by monochromatic laser radiation at the resonant 4I9/24F3/2 transition,” JETP Lett. 29, 639–642 (1979).
  15. S. A. Brawer and M. J. Weber, “Observation of fluorescence line narrowing, hole burning, and ion–ion energy transfer in neodymium laser glass,” Appl. Phys. Lett. 35, 31–33 (1979). [CrossRef]
  16. T. T. Basiev, V. A. Malyshev, and A. K. Prhevuskii, “Spectral migration of excitations in rare-earth activated glasses,” in Spectroscopy of Solids Containing Rare Earth Ions, A. A. Kaplyanskii and R. M. Macfarlane, eds. (North-Holland, Amsterdam, 1987), p. 303–341.
  17. W. M. Yen, “Studies of energy transfer in rare-earth ions in crystals,” in Spectroscopy of Solids Containing Rare Earth Ions, A. A. Kaplyanskii and R. M. Macfarlane, eds. (North-Holland, Amsterdam, 1987), p. 185–247.
  18. M. M. Broer, D. L. Huber, W. M. Yen, and W. K. Zwicker, “Resonant fluorescence line narrowing in La1−xP5O14:Ndx3+,” Phys. Rev. Lett. 49, 394–398 (1982). [CrossRef]
  19. R. Balda, J. Fernández, M. Sanz, A. de Pablos, J. M. Fdez-Navarro, and J. Mugnier, “Laser spectroscopy of Nd3+ ions in GeO2–PbO–Bi2O3 glasses,” Phys. Rev. B 61, 3384–3390 (2000). [CrossRef]
  20. B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev. 127, 750–761 (1962). [CrossRef]
  21. G. S. Ofelt, “Intensities of crystal spectra of rare earth ions,” J. Chem. Phys. 37, 511–520 (1962). [CrossRef]
  22. R. R. Jacobs and M. J. Weber, “Dependence of the 4F3/24I11/2 induced-emission cross section for Nd on glass composition,” IEEE J. Quantum Electron. QE-12, 102–111 (1976). [CrossRef]
  23. H. Takebe, K. Morinaga, and T. Izumitani, “Correlation between radiative transition probabilities of rare-earth ions and composition in oxide glasses,” J. Non-Cryst. Solids 178, 58–63 (1994). [CrossRef]
  24. Z. Pan, S. H. Morgan, K. Dyer, A. Ueda, and H. Liu, “Host-dependent optical transitions of Er3+ ions in lead-germanate and lead-tellurium-germanate glasses,” J. Appl. Phys. 79, 8906–8913 (1996). [CrossRef]
  25. R. Balda, J. Fernández, A. de Pablos, and J. M. Fdez-Navarro, “Spectroscopic properties of Pr3+ ions in lead germanate glass,” J. Phys.: Condens. Matter 11, 7411–7421 (1999).
  26. A. T. Stanley, E. A. Harris, T. M. Searle, and J. M. Parker, “Upconversion in neodymium doped fluoride glasses,” J. Non-Cryst. Solids 161, 235–240 (1993). [CrossRef]
  27. T. Tsuneoka, K. Kojima, and S. Bojja, “Upconversion fluorescence and low temperature fluorescence properties in Nd3+-doped ZnCl2-based glass,” J. Non-Cryst. Solids 202, 297–302 (1996). [CrossRef]
  28. T. Y. Fan and R. L. Byer, “Two-step excitation and blue fluorescence under continuous-wave pumping in Nd:YLF,” J. Opt. Soc. Am. B 3, 1519–1525 (1986). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited