OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 17, Iss. 12 — Dec. 1, 2000
  • pp: 2018–2025

Quadratic solitons resulting from double-resonance wave mixing

Isaac Towers, Alexander V. Buryak, Rowland A. Sammut, and Boris A. Malomed  »View Author Affiliations

JOSA B, Vol. 17, Issue 12, pp. 2018-2025 (2000)

View Full Text Article

Acrobat PDF (216 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The existence and stability of three-wave solitons, both (1+1) and (2+1) dimensional, that result from a double-resonance (type I plus type II) parametric interaction in a purely quadratic nonlinear medium are investigated. We demonstrate the existence of a family of stable solitons for a broad parameter range in the double-resonance model. Further, these solitons exhibit multistability, a property that is potentially useful for optical switching applications. We introduce a way to measure the quality of multistability and use this measure to compare the double-resonance model with single-resonance models in χ<sup>(2)</sup> media. We also discuss the modulational instability of the double-resonance system and present physical estimates of the power required for soliton generation.

© 2000 Optical Society of America

OCIS Codes
(190.4410) Nonlinear optics : Nonlinear optics, parametric processes
(190.5530) Nonlinear optics : Pulse propagation and temporal solitons

Isaac Towers, Alexander V. Buryak, Rowland A. Sammut, and Boris A. Malomed, "Quadratic solitons resulting from double-resonance wave mixing," J. Opt. Soc. Am. B 17, 2018-2025 (2000)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, “Generation of optical harmonics,” Phys. Rev. Lett. 7, 118–119 (1961).
  2. J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 6, 1918–1935 (1962).
  3. G. P. Agrawal, Nonlinear Fiber Optics (Academic, San Diego, Calif., 1995).
  4. P. St. J. Russell, “All-optical high gain transistor action using second-order nonlinearities,” Electron. Lett. 29, 1228–1229 (1993); G. Assanto, “Transistor action through nonlinear cascading in type II interactions,” Opt. Lett. 20, 1595–1597 (1995); A. Kobyakov, F. Lederer, O. Bang, and Yu. S. Kivshar, “Nonlinear phase shift and all-optical switching in quasi-phase-matched quadratic media,” Opt. Lett. OPLEDP 23, 506–508 (1998); K. Gallo and G. Assanto, “All-optical diode based on second-harmonic generation in an asymmetric waveguide,” J. Opt. Soc. Am. B JOBPDE 16, 267–269 (1999).
  5. A. V. Buryak and Yu. S. Kivshar, “Solitons due to second harmonic generation,” Phys. Lett. A 197, 407–412 (1995); D. E. Pelinovsky, A. V. Buryak, and Yu. S. Kivshar, “Instabilities of solitons governed by quadratic nonlinearities,” Phys. Rev. Lett. 75, 591–595 (1995).
  6. A. V. Buryak, Yu. S. Kivshar, and S. Trillo, “Parametric spatial solitary waves due to type II second harmonic generation,” J. Opt. Soc. Am. B 14, 3110–3118 (1997).
  7. H. T. Tran, “Self-induced phase-matching and three-wave bright spatial solitons in quadratic media,” Opt. Commun. 118, 581–586 (1995); B. A. Malomed, D. Anderson, and M. Lisak, “Three-wave interaction solitons in a dispersive medium with quadratic nonlinearity,” Opt. Commun. 126, 251–254 (1996).
  8. C. Etrich, F. Lederer, B. A. Malomed, T. Peschel, and U. Peschel, “Optical solitons in media with quadratic nonlinearity,” Prog. Opt. (to be published).
  9. A. D. Boardman, P. Bontemps, and K. Xie, “Vector solitary optical beams controlled with mixed type I–type II second harmonic generation,” Opt. Quantum Electron. 30, 891–906 (1998).
  10. S. Saltiel and Y. Deyanova, “Polarization switching as a result of cascading of two simultaneously phase-matched quadratic processes,” Opt. Lett. 24, 1296–1298 (1999); S. Saltiel, K. Koynov, Y. Deyanova, and Y. S. Kivshar, “Nonlinear phase shift resulting from two-color multistep cascading,” J. Opt. Soc. Am. B 17, 959–965 (2000).
  11. Yu. S. Kivshar, T. J. Alexander, and S. Saltiel, “Spatial optical solitons resulting from multistep cascading,” Opt. Lett. 24, 759–761 (1999); Yu. S. Kivshar, A. A. Sukhorukov, and S. M. Saltiel, “Two color multistep cascading and parametric soliton induced waveguides,” Phys. Rev. E 60, R5056–R5059 (1999).
  12. M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi phase matched second harmonic generation: tunings and tolerances,” IEEE J. Quantum Electron. 28, 2631–2654 (1992); G. D. Miller, R. G. Batchko, W. M. Tulloch, D. R. Weise, M. M. Fejer, and R. L. Byer, “42%-efficient single pass cw second harmonic generation in periodically poled lithium niobate,” Opt. Lett. 22, 1834–1836 (1997).
  13. C. B. Clausen, O. Bang, and Yu. S. Kivshar, “Spatial solitons and induced Kerr effects in quasi phase matched quadratic media,” Phys. Rev. Lett. 78, 4749–4752 (1997).
  14. K. Fradkin-Kashi and A. Arie, “Multiple-wavelength quasi-phase-matched nonlinear interactions,” IEEE J. Quantum Electron. 35, 1649–1655 (1999).
  15. X. Mu, X. Gu, M. V. Makarov, Y. J. Ding, J. Wang, J. Wei, and Y. Liu, “Third-harmonic generation by cascading second-order nonlinear processes in a cerium-doped KTiOPO4 crystal,” Opt. Lett. 25, 117–119 (2000).
  16. S. Trillo and G. Assanto, “Polarization spatial chaos in second-harmonic generation,” Opt. Lett. 19, 1825–1827 (1994).
  17. S. Trillo and P. Ferro, “Modulational instability in second-harmonic generation,” Opt. Lett. 20, 438–440 (1995).
  18. M. Haelterman and A. P. Sheppard, “Extended modulational instability and new type of solitary wave in coupled nonlinear Schrödinger equations,” Phys. Lett. A 185, 265–272 (1994); H. He, P. D. Drummond, and B. A. Malomed, “Modulational stability in dispersive optical systems with cascaded nonlinearity,” Opt. Commun. 123, 394–402 (1996); H. He, A. Arraf, C. M. de Sterke, P. D. Drummond, and B. A. Malomed, “Theory of modulational instability in Bragg gratings with quadratic nonlinearity,” Phys. Rev. E PLEEE8 59, 6064–6078 (1999).
  19. D. V. Skryabin and W. J. Firth, “Modulational instability of solitary waves in nondegenerate three-wave mixing: the role of phase symmetries,” Phys. Rev. Lett. 81, 3379–3382 (1998).
  20. M. G. Vakhitov and A. A. Kolokolov, “Stationary solutions of the wave equation in a medium with nonlinearity saturation,” Izv. Vyssh. Uchebn. Zaved., Radiofiz. 16, 1020–1028 (1973) [Radiophys. Quantum Electron. 16, 783–789 (1973)]; D. E. Pelinovsky, V. V. Afanasjev, and Yu. S. Kivshar, “Nonlinear theory of oscillating, decaying, and collapsing solitons in the generalized nonlinear Schrödinger equation,” Phys. Rev. E PLEEE8 53, 1940–1953 (1996).
  21. C. Etrich, U. Peschel, F. Lederer, B. A. Malomed, and Y. S. Kivshar, “Origin of the persistent oscillations of solitary waves in nonlinear quadratic media,” Phys. Rev. E 54, 4321–4324 (1996); Y. S. Kivshar, D. E. Pelinovsky, T. Cretegny, and M. Peyrard, “Internal modes of solitary waves,” Phys. Rev. Lett. 80, 5032–5035 (1998).
  22. A. V. Buryak and Yu. S. Kivshar, “Multistability of three wave parametric self trapping,” Phys. Rev. Lett. 78, 3286–3289 (1997).
  23. D. J. Kaup, T. I. Lakoba, and B. A. Malomed, “Asymmetric solitons in mismatched dual-core optical fibers,” J. Opt. Soc. Am. B 14, 1199–1206 (1997); V. E. Zakharov and E. A. Kuznetsov, “Optical solitons and quasisolitons,” JETP 86, 1035–1046 (1998).
  24. L. Torner and E. M. Wright, “Soliton excitations and mutual locking of light beams in bulk quadratic nonlinear crystals,” J. Opt. Soc. Am. B 13, 864–875 (1996).
  25. T. Peschel, U. Peschel, F. Lederer, and B. A. Malomed, “Solitary waves in Bragg gratings with a quadratic nonlinearity,” Phys. Rev. E 55, 4730–4739 (1997); W. C. K. Mak, B. A. Malomed, and P. L. Chu, “Three-wave gap solitons in waveguides with quadratic nonlinearity,” Phys. Rev. E 58, 6708–6722 (1998); E. A. Ostrovskaya, Yu. S. Kivshar, D. V. Skryabin, and W. J. Firth, “Stability of multihump optical solitons,” Phys. Rev. Lett. PRLTAO 83, 296–299 (1999).
  26. B. Bourliaguet, V. Couderc, A. Barthelemy, G. W. Ross, P. G. R. Smith, D. C. Hanna, and C. De Angelis, “Observation of quadratic spatial solitons in periodically poled lithium niobate,” Opt. Lett. 24, 1410–1412 (1999).
  27. W. E. Torruellas, Z. Wang, D. J. Hagan, E. W. Van Stryland, G. I. Stegeman, L. Torner, and C. R. Menyuk, “Observation of two dimensional spatial soliton waves in a quadratic medium,” Phys. Rev. Lett. 74, 5036–5039 (1995).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited