OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 17, Iss. 12 — Dec. 1, 2000
  • pp: 2086–2094

Generation, shaping, and characterization of intense femtosecond pulses tunable from 3 to 20 µm

Robert A. Kaindl, Matthias Wurm, Klaus Reimann, Peter Hamm, Andrew M. Weiner, and Michael Woerner  »View Author Affiliations

JOSA B, Vol. 17, Issue 12, pp. 2086-2094 (2000)

View Full Text Article

Enhanced HTML    Acrobat PDF (657 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report on an intense mid-infrared light source that provides femtosecond pulses on a microjoule energy level, broadly tunable in the 3–20-µm wavelength range with pulse durations as short as 50 fs at 5 µm. The pulses are generated by phase-matched difference-frequency mixing in GaSe of near-infrared signal and idler pulses of a parametric device based on a 1-kHz Ti:sapphire amplifier system. Pulse durations are characterized with different techniques including autocorrelation measurements in AgGaS2, two-photon absorption in InSb, and cross-correlation measurements with near-infrared pulses in a thin GaSe crystal. A subsequent zero-dispersion stretcher of high transmission allows for optimum pulse compression, a more detailed amplitude and phase characterization and, ultimately, amplitude shaping of the mid-infrared pulses.

© 2000 Optical Society of America

OCIS Codes
(190.2620) Nonlinear optics : Harmonic generation and mixing
(190.4970) Nonlinear optics : Parametric oscillators and amplifiers
(190.7220) Nonlinear optics : Upconversion
(230.4320) Optical devices : Nonlinear optical devices
(320.5540) Ultrafast optics : Pulse shaping
(320.7110) Ultrafast optics : Ultrafast nonlinear optics

Robert A. Kaindl, Matthias Wurm, Klaus Reimann, Peter Hamm, Andrew M. Weiner, and Michael Woerner, "Generation, shaping, and characterization of intense femtosecond pulses tunable from 3 to 20 μm," J. Opt. Soc. Am. B 17, 2086-2094 (2000)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. Elsaesser, J. G. Fujimoto, D. A. Wiersma, and W. Zinth, eds., Ultrafast Phenomena XI (Springer-Verlag, Berlin, 1998).
  2. C. Chudoba, E. T. J. Nibbering, and T. Elsaesser, “Site-specific excited-state solute–solvent interactions probed by femtosecond vibrational spectroscopy,” Phys. Rev. Lett. 81, 3010–3013 (1998). [CrossRef]
  3. E. J. Heilweil, “Ultrafast glimpses at water and ice,” Science 283, 1467–1468 (1999). [CrossRef]
  4. S. Woutersen, U. Emmerichs, and H. J. Bakker, “Femtosecond mid-IR pump–probe spectroscopy of liquid water: evidence for a two-component structure,” Science 278, 658–660 (1997). [CrossRef]
  5. P. Hamm, M. Lim, and R. Hochstrasser, “Non-Markovian dynamics of the vibrations of ions in water from femtosecond infrared three-pulse photon echoes,” Phys. Rev. Lett. 81, 5326–5329 (1998). [CrossRef]
  6. R. M. Hochstrasser, P. Hamm, and M. Lim, “Femtosecond Dynamics, two-dimensional infrared spectroscopy and echoes of protein vibrations,” in Ultrafast Phenomena XI, T. Elsaesser, J. G. Fujimoto, D. A. Wiersma, and W. Zinth, eds. (Springer-Verlag, Berlin, 1998), pp. 653–657.
  7. T. Elsaesser and M. Woerner, “Femtosecond infrared spectroscopy of semiconductors and semiconductor nanostructures,” Phys. Rep. 321, 253–305 (1999). [CrossRef]
  8. R. A. Kaindl, S. Lutgen, M. Woerner, T. Elsaesser, B. Nottelmann, V. M. Axt, T. Kuhn, A. Hase, and H. Künzel, “Ultrafast dephasing of coherent intersubband polarizations in a quasi-two-dimensional electron plasma,” Phys. Rev. Lett. 80, 3575–3578 (1998). [CrossRef]
  9. S. Lutgen, R. A. Kaindl, M. Woerner, T. Elsaesser, A. Hase, H. Künzel, M. Gulia, D. Meglio, and P. Lugli, “Nonequilibrium dynamics in a quasi-two-dimensional electron plasma after ultrafast intersubband excitation,” Phys. Rev. Lett. 77, 3657–3660 (1996). [CrossRef] [PubMed]
  10. R. A. Kaindl, M. Woerner, T. Elsaesser, D. C. Smith, J. F. Ryan, G. A. Farnan, M. P. McCurry, and D. G. Walmsley, “Ultrafast mid-infrared response of YBa2Cu3O7−δ,” Science 287, 470–473 (2000). [CrossRef] [PubMed]
  11. A. Baltuska, Z. Wei, M. S. Pshenichnikov, and D. A. Wiersma, “Optical pulse compression to 5 fs at a 1-MHz repetition rate,” Opt. Lett. 22, 102–104 (1997). [CrossRef] [PubMed]
  12. M. Nisoli, S. DeSilvestri, O. Svelto, R. Szipöcs, K. Ferencz, Ch. Spielmann, S. Sartania, and F. Krausz, “Compression of high-energy laser pulses below 5 fs,” Opt. Lett. 22, 522–524 (1997). [CrossRef] [PubMed]
  13. R. L. Fork, C. H. BritoCruz, P. C. Becker, and C. V. Shank, “Compression of optical pulses to six femtoseconds by using cubic phase compensation,” Opt. Lett. 12, 483–485 (1987). [CrossRef] [PubMed]
  14. D. E. Spence, S. Wielandy, C. L. Tang, C. Bosshard, and P. Günter, “High-average power, high-repetition rate femtosecond pulse generation in the 1–5 μm region using an optical parametric oscillator,” Appl. Phys. Lett. 68, 452–454 (1996). [CrossRef]
  15. C. McGowan, D. T. Reid, M. Ebrahimzadeh, and W. Sibbett, “Femtosecond pulses tunable beyond 4 μm from a KTA-based optical parametric oscillator,” Opt. Commun. 134, 186–190 (1997). [CrossRef]
  16. V. Petrov and F. Noack, “Tunable femtosecond optical parametric amplifier in the mid-infrared with narrow-band seeding,” J. Opt. Soc. Am. B 12, 2214–2221 (1995). [CrossRef]
  17. G. M. Gale, G. Gallot, F. Hache, and R. Sander, “Generation of intense highly coherent femtosecond pulses in the mid-infrared,” Opt. Lett. 22, 1253–1255 (1997). [CrossRef] [PubMed]
  18. A. Lohner, P. Kruck, and W. W. Rühle, “Generation of 200 femtosecond pulses tunable between 2.5 and 5.5 μm,” Appl. Phys. 59, 211–213 (1994). [CrossRef]
  19. T. Elsaesser and M. C. Nuss, “Femtosecond pulses in the mid-infrared generated by downconversion of a traveling-wave dye laser,” Opt. Lett. 16, 411–413 (1991). [CrossRef] [PubMed]
  20. C. Ludwig, W. Frey, M. Woerner, and T. Elsaesser, “Generation of synchronized femtosecond pulses independently tunable in the mid-infrared,” Opt. Commun. 102, 447–451 (1993). [CrossRef]
  21. M. R. X. de Barros, R. S. Miranda, T. M. Jedju, and P. C. Becker, “High-repetition rate femtosecond mid-infrared pulse generation,” Opt. Lett. 20, 480–482 (1995). [CrossRef] [PubMed]
  22. V. Petrov, F. Rotermund, and F. Noack, “Femtosecond parametric generation in ZnGeP2,” Opt. Lett. 24, 414–416 (1999). [CrossRef]
  23. F. Seifert, V. Petrov, and M. Woerner, “Solid state laser system for the generation of mid-infrared femtosecond pulses tunable from 3.3 to 10 μm,” Opt. Lett. 19, 2009–2011 (1994). [CrossRef] [PubMed]
  24. P. Hamm, M. Lim, and R. Hochstrasser, “Vibrational energy relaxation of the cyanide ion in water,” J. Chem. Phys. 107, 10523–10531 (1997). [CrossRef]
  25. J. M. Fraser, D. Wang, A. Haché, G. R. Allan, and H. M. van Driel, “Generation of high-repetition rate femtosecond pulses from 8 to 18 μm,” Appl. Opt. 36, 5044–5047 (1997). [CrossRef] [PubMed]
  26. S. Ehret and H. Schneider, “Generation of subpicosecond infrared pulses tunable between 5.2 and 18 μm at a repetition rate of 76 MHz,” Appl. Phys. 66, 27–30 (1998). [CrossRef]
  27. R. A. Kaindl, F. Eickemeyer, M. Woerner, and T. Elsaesser, “Broadband phasematched difference frequency mixing of femtosecond pulses in GaSe: experiment and theory,” Appl. Phys. Lett. 75, 1060–1062 (1999). [CrossRef]
  28. I. M. Bayanov, R. Danielus, P. Heinz, and A. Seilmeier, “Intense subpicosecond pulses tunable between 4 μm and 20 μm,” Opt. Commun. 113, 99–104 (1994). [CrossRef]
  29. T. Dahinten, U. Plödereder, A. Seilmeier, K. L. Vodopyanov, K. R. Allakhverdiev, and Z. A. Ibragimov, “Infrared pulses of 1 picosecond duration tunable between 4 μm and 18 μm,” IEEE J. Quantum Electron. 29, 2245–2250 (1993). [CrossRef]
  30. A. Dhirani and P. Guyot-Sionnest, “Efficient generation of infrared picosecond pulses from 10 to 20 μm,” Opt. Lett. 20, 1104–1106 (1995). [CrossRef] [PubMed]
  31. P. Y. Han and X.-C. Zhang, “Coherent broadband mid-infrared terahertz beam sensors,” Appl. Phys. Lett. 73, 3049–3051 (1998). [CrossRef]
  32. A. Bonvalet, M. Joffre, J. L. Martin, and A. Migus, “Generation of ultrabroadband femtosecond pulses in the mid-infrared by optical rectification of 15 fs light pulses at 100 MHz repetition rate,” Appl. Phys. Lett. 67, 2907–2909 (1995). [CrossRef]
  33. M. Joffre, A. Bonvalet, A. Migus, and J. L. Martin, “Femtosecond diffracting Fourier-transform infrared interferometer,” Opt. Lett. 21, 964–966 (1996). [CrossRef] [PubMed]
  34. A. Leitenstorfer, S. Hunsche, J. Shah, M. C. Nuss, and W. H. Knox, “Detectors and sources for ultrabroadband electro-optic sampling: experiment and theory,” Appl. Phys. Lett. 74, 1516–1518 (1999). [CrossRef]
  35. V. G. Dmitriev, G. G. Gurzadyan, and D. N. Nikogosyan, Handbook of Nonlinear Optical Crystals, Vol. 64 of Springer Series in Optical Sciences (Springer-Verlag, Heidelberg, Germany, 1997).
  36. G. B. Abdullaev, L. A. Kulevskii, A. M. Prokhorov, A. D. Savel’ev, E. Y. Salaev, and V. V. Smirnov, “GaSe, a new effective material for nonlinear optics,” JETP Lett. 16, 90–92 (1972).
  37. One type of these dichroic mirrors has high reflection at the pump wavelength (i.e., from 750 to 850 nm) and high transmission at the signal (1200–1620 nm). The other type has high reflection for the s-polarized signal and high transmission for the p-polarized idler (1620–2500 nm).
  38. D. R. Suhre, N. B. Singh, V. Balakrishna, N. C. Fernelius, and F. K. Hopkins, “Improved crystal quality and harmonic generation in GaSe doped with indium,” Opt. Lett. 22, 775–777 (1997). [CrossRef] [PubMed]
  39. S. Akhmanov, A. S. Chirkin, K. N. Drabovich, A. I. Kovrigin, R. V. Khokhlov, and A. P. Sukhorukov, “Nonstationary nonlinear optical effects and ultrashort light pulse formation,” IEEE J. Quantum Electron. 4, 598–605 (1968). [CrossRef]
  40. A. M. Weiner, J. P. Heritage, and E. M. Kirschner, “High-resolution femtosecond pulse shaping,” J. Opt. Soc. Am. B 5, 1563–1572 (1988). [CrossRef]
  41. O. E. Martinez, “3000-times grating compressor with positive group velocity dispersion,” IEEE J. Quantum Electron. 23, 59–64 (1987). [CrossRef]
  42. J.-C. Diels and W. Rudoph, Ultrashort Laser Pulse Phenomena: Fundamentals, Techniques, and Applications on a Femtosecond Timescale (Academic, San Diego, Calif., 1996).
  43. The adjustment is uncritical, because displacements of lens or grating necessary to induce a lengthening of a 100-fs pulse by a factor of 1.4 (i.e., one dispersion length) are of the order of 1 cm for a 150 line/mm grating and thus are easily controlled.
  44. R. L. Fork, O. E. Martinez, and J. P. Gordon, “Negative dispersion using pairs of prisms,” Opt. Lett. 9, 150–152 (1984). [CrossRef] [PubMed]
  45. J. P. Heritage, A. M. Weiner, and R. N. Thurston, “Picosecond pulse shaping by spectral phase and amplitude modulation,” Opt. Lett. 10, 609–611 (1985). [CrossRef] [PubMed]
  46. A. M. Weiner, D. E. Leaird, J. S. Patel, and J. Wullert, “Programmable femtosecond pulse shaping by use of a multielement liquid-crystal phase modulator,” Opt. Lett. 15, 326–328 (1990). [CrossRef] [PubMed]
  47. A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum. 71, 1929–1960 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited