OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 17, Iss. 2 — Feb. 1, 2000
  • pp: 169–177

Nonlinear principal states of polarization in optical fibers with randomly varying birefringence

Michele Midrio  »View Author Affiliations

JOSA B, Vol. 17, Issue 2, pp. 169-177 (2000)

View Full Text Article

Enhanced HTML    Acrobat PDF (168 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The polarization properties of an electromagnetic field that propagates in a fiber with polarization-mode dispersion (PMD) and randomly varying birefringence are studied by resorting to the coupled nonlinear Schrödinger equations. It is shown that the concept of principal states of polarization (PSP’s), meant to be the states that allow undistorted pulse propagation to be achieved in the presence of PMD, may be defined even in the presence of dispersion and nonlinearity. Furthermore, nonlinear PSP’s are proved to coincide with linear PSP’s, as they are customarily defined through the frequency dependence of the fiber input/output relation. Finally, it is also shown that the propagation equations may be exactly reduced to the Manakov equations for any fixed realization of the random process accounting for the fiber PMD. As a result, a whole class of simulton pulses that preserve their shape in the presence of PMD is analytically found.

© 2000 Optical Society of America

OCIS Codes
(060.2310) Fiber optics and optical communications : Fiber optics
(060.2330) Fiber optics and optical communications : Fiber optics communications
(060.4370) Fiber optics and optical communications : Nonlinear optics, fibers
(190.4370) Nonlinear optics : Nonlinear optics, fibers
(190.5530) Nonlinear optics : Pulse propagation and temporal solitons
(260.5430) Physical optics : Polarization

Michele Midrio, "Nonlinear principal states of polarization in optical fibers with randomly varying birefringence," J. Opt. Soc. Am. B 17, 169-177 (2000)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Hasegawa and F. Tappert, “Transmission of stationary nonliner optical pulses in dispersive dielectric fibers. I. Anomalous dispersion,” Appl. Phys. Lett. 23, 142–144 (1973). [CrossRef]
  2. A. Hasegawa, “Amplification and reshaping of optical solitons in glass fibers. IV. Use of stimulated Raman process,” Opt. Lett. 8, 650–652 (1983). [CrossRef] [PubMed]
  3. L. F. Mollenauer, R. H. Stolen, and M. N. Islam, “Experimental demonstration of soliton propagation in long fibers: loss compensated by Raman gain,” Opt. Lett. 10, 229–231 (1985). [CrossRef] [PubMed]
  4. L. F. Mollenauer, J. P. Gordon, and M. N. Islam, “Soliton propagation in long fibers with periodically compensated loss,” IEEE J. Quantum Electron. 22, 157–173 (1986). [CrossRef]
  5. A. Hasegawa and Y. Kodama, “Guiding center soliton,” Phys. Rev. Lett. 66, 161–164 (1991). [CrossRef] [PubMed]
  6. N. J. Smith, K. J. Blow, and I. Andonovic, “Sideband generation through perturbations to the average soliton model,” J. Lightwave Technol. 10, 1329–1333 (1992). [CrossRef]
  7. J. P. Gordon and H. A. Haus, “Random walk of coherently amplified solitons in optical fiber transmission,” Opt. Lett. 11, 665–667 (1986). [CrossRef] [PubMed]
  8. A. Mecozzi, J. D. Moores, H. A. Haus, and Y. Lai, “Soliton transmission control,” Opt. Lett. 16, 1841–1843 (1991). [CrossRef] [PubMed]
  9. Y. Kodama and A. Hasegawa, “Generation of asymptotically stable optical solitons and suppression of the Gordon–Haus effect,” Opt. Lett. 17, 31–33 (1992). [CrossRef] [PubMed]
  10. M. Nakazawa, K. Suzuki, E. Yamada, H. Kubota, Y. Kimura, and M. Takaya, “Experimental demonstration of soliton data transmission over unlimited distance with soliton control in time and frequency domain,” Electron. Lett. 29, 729–730 (1993). [CrossRef]
  11. N. S. Bergano and C. R. Davidson, “Circulating loop transmission experiments for the study of long-haul transmission systems using erbium-doped fiber amplifiers,” J. Lightwave Technol. 13, 879–888 (1995). [CrossRef]
  12. N. J. Smith, F. M. Knox, N. J. Doran, K. J. Blow, and I. Bennion, “Enhanced power solitons in optical fibers with periodic dispersion management,” Electron. Lett. 32, 54–55 (1996). [CrossRef]
  13. I. Gabitov and S. K. Turitsyn, “Average pulse dynamics in the cascaded transmission system based on passive compensating technique,” Opt. Lett. 21, 327–329 (1996). [CrossRef]
  14. I. Gabitov and S. K. Turitsyn, “Breathing solitons in optical fiber links,” JETP Lett. 63, 861–866 (1996). [CrossRef]
  15. N. J. Smith, N. J. Doran, F. M. Knox, and W. Forysiak, “Energy-scaling characteristics of solitons in strongly dispersion managed fibers,” Opt. Lett. 21, 1981–1983 (1996). [CrossRef] [PubMed]
  16. S. K. Turitsyn, “Theory of averaged pulse propagation in high bit rate optical transmission systems with strong dispersion management,” JETP Lett. 65, 845–850 (1997). [CrossRef]
  17. C. R. Menyuk, “Nonlinear pulse propagation in birefringent optical fibers,” IEEE J. Quantum Electron. 23, 174–176 (1987). [CrossRef]
  18. C. R. Menyuk, “Pulse propagation in elliptically birefringent Kerr medium,” IEEE J. Quantum Electron. 25, 2674–2682 (1989). [CrossRef]
  19. P. K. A. Wai, C. R. Menyuk, and H. H. Chen, “Stability of solitons in randomly varying birefringent fibers,” Opt. Lett. 16, 1231–1233 (1991). [CrossRef] [PubMed]
  20. P. K. A. Wai and C. R. Menyuk, “Polarization mode dispersion, decorrelation and diffusion in optical fibers with randomly varying birefringence,” J. Lightwave Technol. 14, 148–157 (1996). [CrossRef]
  21. P. K. A. Wai, W. L. Kath, C. R. Menyuk, and J. W. Zhang, “Nonlinear polarization-mode dispersion in optical fibers with randomly varying birefringence,” J. Opt. Soc. Am. B 14, 2967–2979 (1997). [CrossRef]
  22. C. D. Poole and R. E. Wagner, “Phenomenological approach to polarization dispersion in long single-mode fibers,” Electron. Lett. 22, 1029–1030 (1986). [CrossRef]
  23. D. Andresciani, F. Curti, F. Matera, and B. Daino, “Measurement of the group-delay difference between the principal states of polarization on a low birefringence terrestrial fiber cable,” Opt. Lett. 12, 844–846 (1987). [CrossRef] [PubMed]
  24. N. S. Bergano, C. D. Poole, and R. E. Wagner, “Investigation of polarization dispersion in long lengths of single-mode fiber using multi-longitudinal mode laser,” J. Lightwave Technol. 5, 1618–1622 (1987). [CrossRef]
  25. C. D. Poole, “Statistical treatment of polarization dispersion in single-mode fibers,” Opt. Lett. 13, 687–689 (1988). [CrossRef]
  26. F. Curti, B. Daino, Q. Mao, F. Matera, and C. G. Someda, “Concatenation of polarization-dispersion in single-mode fibers,” Electron. Lett. 25, 290–291 (1989). [CrossRef]
  27. C. D. Poole, “Measurement of polarization-mode dispersion in single-mode fibers with random mode coupling,” Opt. Lett. 14, 523–525 (1989). [CrossRef] [PubMed]
  28. F. Curti, B. Daino, G. De Marchis, and F. Matera, “Statistical treatment of the evolution of the principal states of polarization on a low-birefringence terrestrial fiber cable,” J. Lightwave Technol. 8, 1162–1166 (1990). [CrossRef]
  29. C. D. Poole, J. H. Winters, and J. A. Nagel, “Dynamical equation for polarization dispersion,” Opt. Lett. 16, 372–374 (1991). [CrossRef] [PubMed]
  30. S. Betti, F. Curti, G. De Marchis, E. Iannone, and F. Matera, “Evolution of the bandwidth of the principal states of polarization in single-mode fibers,” Opt. Lett. 16, 467–469 (1991). [CrossRef] [PubMed]
  31. G. J. Foschini and C. D. Poole, “Statistical theory of polarization dispersion in single mode fibers,” J. Lightwave Technol. 9, 1439–1456 (1991). [CrossRef]
  32. B. L. Heffner, “Automated measurement of polarization mode dispersion using Jones matrix eigenanalysis,” IEEE Photonics Technol. Lett. 4, 1066–1069 (1992). [CrossRef]
  33. F. Matera and C. G. Someda, “Random birefringence and polarization dispersion in long single-mode optical fibers,” in Anisotropic and Nonlinear Optical Waveguides, C. G. Someda and G. Stegeman, eds. (Elsevier, Amsterdam, 1992), pp. 1–38.
  34. G. P. Agrawal, Nonlinear Fiber Optics (Academic, San Diego, 1989).
  35. A. Hasegawa and Y. Kodama, Solitons in Optical Communications (Oxford University, New York, 1995).
  36. T. Georges and F. Favre, “Transmission systems based on dispersion managed solitons: theory and experiment,” in Proceedings of the Second Research Group for Optical Soliton Communications Meeting, A. Hasegawa, ed. (Kluwer Academic, Dordrecht, The Netherlands, 1998); paper 2-A-2.
  37. M. K. Simon, S. M. Hinedi, and W. C. Lindsey, Digital Communication Techniques (Prentice-Hall, Englewood Cliffs, N.J., 1995).
  38. C. De Angelis, A. Galtarossa, G. Gianello, F. Matera, and M. Schiano, “Time evolution of polarization mode dispersion in long terrestrial links,” J. Lightwave Technol. 10, 552–555 (1992). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2

Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited