OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 17, Iss. 2 — Feb. 1, 2000
  • pp: 300–303

Optical constants of lithium fluoride thin films in the far ultraviolet

Véronique Dauer  »View Author Affiliations

JOSA B, Vol. 17, Issue 2, pp. 300-303 (2000)

View Full Text Article

Enhanced HTML    Acrobat PDF (111 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Refractive indices and extinction coefficients of lithium fluoride in thin film coated at room temperature are deduced from reflectance curves from 100 to 120 nm. These refractive indices are smaller but approximately follow the same dispersion law as crystalline LiF indices. The extinction coefficients are of the order of 0.1, i.e., 105 times higher than those of crystalline LiF. The absorption by the low-energy tail of an exciton band has been represented by the Urbach rule. These complex refractive indices have been used to optimize the first-order efficiency of LiF-coated Al gratings of the NASA FUSE (Far Ultraviolet Spectroscopic Explorer) space mission.

© 2000 Optical Society of America

OCIS Codes
(120.4530) Instrumentation, measurement, and metrology : Optical constants
(160.4760) Materials : Optical properties
(260.7210) Physical optics : Ultraviolet, vacuum
(310.0310) Thin films : Thin films

Véronique Dauer, "Optical constants of lithium fluoride thin films in the far ultraviolet," J. Opt. Soc. Am. B 17, 300-303 (2000)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. D. Palik, ed., Handbook of Optical Constants of Solids, 1st ed. (Academic, Orlando, Fla., 1985), pp. 675–693.
  2. R. Kato, “Optical constants of LiF in the extreme ultraviolet,” J. Phys. Soc. Jpn. 16, 1476 (1961). [CrossRef]
  3. D. M. Roessler and W. C. Walker, “Optical constants of magnesium oxide and lithium fluoride in the far ultraviolet,” J. Opt. Soc. Am. 57, 835–836 (1967). [CrossRef]
  4. P. Laporte and J. L. Subtil, “Refractive index of LiF from 105 to 200 nm,” J. Opt. Soc. Am. 72, 1558–1559 (1982). [CrossRef]
  5. P. Laporte, J. L. Subtil, M. Courbon, and M. Bon, “Vacuum-ultraviolet refractive index of LiF and MgF2 in the temperature range 80–300 K,” J. Opt. Soc. Am. 73, 1062–1069 (1983). [CrossRef]
  6. J. T. Cox, G. Hass, and J. E. Waylonis, “Further studies on LiF-overcoated aluminum mirrors with highest reflectance in the vacuum ultraviolet,” Appl. Opt. 7, 1535–1539 (1968). [CrossRef] [PubMed]
  7. M. R. Adriaens and B. Feuerbacher, “Improved LiF and MgF2 overcoated aluminum mirrors for vacuum ultraviolet astronomy,” Appl. Opt. 10, 958–959 (1971). [CrossRef] [PubMed]
  8. D. W. Angel, W. R. Hunter, R. Tousey, and G. Hass, “Extreme ultraviolet reflectance of LiF-coated aluminum mirrors,” J. Opt. Soc. Am. 51, 913–914 (1961). [CrossRef]
  9. D. A. Patterson and W. H. Vaughan, “Influence on crystal surface on the optical transmission of lithium fluoride in the vacuum ultraviolet spectrum,” J. Opt. Soc. Am. 53, 851–855 (1963). [CrossRef]
  10. T. L. Haltom, E. T. Arakawa, M. W. Williams, and E. Kretschmann, “Refractive index of LiF films as a function of time,” Appl. Opt. 18, 1233–1236 (1979). [CrossRef] [PubMed]
  11. E. T. Hutcheson, G. Hass, and J. T. Cox, “Effect of deposition rate and substrate temperature on the vacuum ultraviolet reflectance of MgF2- and LiF-overcoated aluminum mirrors,” Appl. Opt. 11, 2245–2248 (1972). [CrossRef] [PubMed]
  12. U. Kaiser, N. Kaiser, P. Weissbrodt, U. Mademann, E. Hacker, and H. Müller, “Structure of thin fluoride films deposited on amorphous substrates,” Thin Solid Films 217, 7–16 (1992). [CrossRef]
  13. W. R. Hunter, J. F. Osantowski, and G. Hass, “Reflectance of aluminum overcoated with MgF2 and LiF in the wavelength region from 1600 Å to 300 Å at various angles of incidence,” Appl. Opt. 10, 540–544 (1971). [CrossRef] [PubMed]
  14. W. R. Hunter, “Optical constants of metals in the extreme ultraviolet. II. Optical constants of aluminum, magnesium, and indium at wavelengths shorter than their critical wavelengths,” J. Opt. Soc. Am. 54, 208–212 (1964). [CrossRef]
  15. F. Abelès, “Sur la propagation des ondes électromagnétiques dans les milieux stratifiés,” Ann. Phys. (Paris) 3, 504–520 (1948).
  16. K. Kameswara Rao, T. J. Moravec, J. C. Rife, and R. N. Dexter, “Vacuum ultraviolet reflectivities of LiF, NaF, and KF,” Phys. Rev. B 12, 5937–5950 (1975). [CrossRef]
  17. D. M. Roessler and W. C. Walker, “Electronic spectrum of crystalline lithium fluoride,” J. Phys. Chem. Solids 28, 1507–1515 (1967). [CrossRef]
  18. J. E. Eby, K. J. Teegarden, and D. B. Dutton, “Ultraviolet absorption of alkali halides,” Phys. Rev. 116, 1099–1105 (1959). [CrossRef]
  19. R. S. Knox and N. Inchauspé, “Exciton states in ionic crystals,” Phys. Rev. 116, 1093–1099 (1959). [CrossRef]
  20. R. S. Knox and W. H. Knox, “Excitons,” in Encyclopedia of Applied Physics (VCH, Deerfield Beach, Fla., 1993), Vol. 6, pp. 311–324.
  21. F. Urbach, “The long-wavelength edge of photographic sensitivity and of the electronic absorption of solids,” Phys. Rev. 92, 1324 (1953). [CrossRef]
  22. T. Tomiki and T. Miyata, “Optical studies of alkali fluorides and alkaline earth fluorides in VUV region,” J. Phys. Soc. Jpn. 27, 658–678 (1969). [CrossRef]
  23. H. Mahr, “Absorption band shape and Urbach’s rule of localized excitons,” Phys. Rev. 132, 1880–1884 (1963). [CrossRef]
  24. R. Grange, V. Dauer, M. Saisse, M. Nevière, J. Flamand, and F. Bonnemason, “6000g/mm holographic flight gratings for the high resolution Far Ultraviolet Spectroscopic Explorer: efficiency, resolution and stray light measurements,” in Theory and Practice of Surface-Relief Diffraction Gratings: Synchrotron and Other Applications, W. R. McKinney and C. A. Palmer, eds., Proc. SPIE 3450, 103–112 (1998).
  25. M. Nevière, P. Vincent, and R. Petit, “Sur la théorie du réseau conducteur et ses applications à l’optique,” Nouv. Rev. Opt. 5, 65–77 (1974).
  26. V. Dauer, M. Nevière, R. Grange, and J. Flamand, “Comparison between measured and calculated efficiencies of high dimension, 6000 g/mm holographic gratings in the 90–120 nm range,” oral communication and résumé in Electromagnetic Optics, 19th Topical Meeting of the European Optical Society, Hyères France (September 7–9, 1998).
  27. V. Dauer, “Spectroscopie à haute résolution dans l’ultraviolet lointain:études des performances des réseaux du spectrographe spatial FUSE (Far Ultraviolet Spectroscopic Explorer)—Amélioration de l’efficacité de ces réseaux par usinage ionique,” Ph.D. dissertation, Université d’Aix-Marseille III (Marseille, France, 1998).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited