OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 17, Iss. 2 — Feb. 1, 2000
  • pp: 304–318

Ultrashort-pulse second-harmonic generation with longitudinally nonuniform quasi-phase-matching gratings: pulse compression and shaping

G. Imeshev, M. A. Arbore, M. M. Fejer, A. Galvanauskas, M. Fermann, and D. Harter  »View Author Affiliations


JOSA B, Vol. 17, Issue 2, pp. 304-318 (2000)
http://dx.doi.org/10.1364/JOSAB.17.000304


View Full Text Article

Acrobat PDF (244 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a theory of ultrashort-pulse second-harmonic generation (SHG) in materials with longitudinally nonuniform quasi-phase-matching (QPM) gratings. We derive an expression for the output second-harmonic field generated in an arbitrary QPM grating from an arbitrary fundamental field, valid for arbitrary material dispersion in the undepleted-pump approximation. In the case when group-velocity dispersion can be neglected, a simple transfer-function relationship describes the SHG process. This SHG transfer function depends only on material properties and on the QPM grating design. We use this SHG transfer function to show that nonuniform QPM gratings can be designed to generate nearly arbitrarily shaped second-harmonic output pulses. We analyze in detail a technologically important example of pulse shaping: the generation of compressed second-harmonic pulses from linearly chirped fundamental input pulses. The efficiency of these interactions as well as the limits imposed by higher-order material dispersion are discussed.

© 2000 Optical Society of America

OCIS Codes
(140.7090) Lasers and laser optics : Ultrafast lasers
(190.2620) Nonlinear optics : Harmonic generation and mixing
(190.4360) Nonlinear optics : Nonlinear optics, devices
(190.7110) Nonlinear optics : Ultrafast nonlinear optics
(230.4320) Optical devices : Nonlinear optical devices
(320.5520) Ultrafast optics : Pulse compression
(320.5540) Ultrafast optics : Pulse shaping
(320.7080) Ultrafast optics : Ultrafast devices
(320.7110) Ultrafast optics : Ultrafast nonlinear optics

Citation
G. Imeshev, M. A. Arbore, M. M. Fejer, A. Galvanauskas, M. Fermann, and D. Harter, "Ultrashort-pulse second-harmonic generation with longitudinally nonuniform quasi-phase-matching gratings: pulse compression and shaping," J. Opt. Soc. Am. B 17, 304-318 (2000)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-17-2-304


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. R. L. Byer, “Quasi-phasematched nonlinear interactions and devices,” J. Nonlinear Opt. Phys. Mater. 6, 549–592 (1997), and references therein.
  2. S. L. Shapiro, “Second harmonic generation in LiNbO3 by picosecond pulses,” Appl. Phys. Lett. 13, 19–21 (1968).
  3. J. Comly and E. Garmire, “Second harmonic generation from short pulses,” Appl. Phys. Lett. 12, 7–9 (1968).
  4. W. H. Glenn, “Second harmonic generation by picosecond optical pulses,” IEEE J. Quantum Electron. QE-5, 284–290 (1969).
  5. S. A. Akhmanov, A. P. Sukhorukov, and A. S. Chirkin, “Nonstationary phenomena and space–time analogy in nonlinear optics,” Sov. Phys. JETP 28, 748–757 (1969).
  6. S. A. Akhmanov, A. I. Kovrygin, and A. P. Sukhorukov, in Quantum Electronics: A Treatise, H. Rabin and C. L. Tang, eds. (Academic, New York, 1975), Vol. 1.
  7. S. A. Akhmanov, V. A. Vysloukh, and A. S. Chirkin, Optics of Femtosecond Laser Pulses (American Institute of Physics, Melville, New York, 1992).
  8. A. M. Weiner, “Effect of group velocity mismatch on the measurement of ultrashort optical pulses via second harmonic generation,” IEEE J. Quantum Electron. QE-19, 1276–1283 (1983).
  9. A. M. Weiner, A. M. Kan’an, and D. E. Leaird, “High-efficiency blue generation by frequency doubling of femtosecond pulses in a thick nonlinear crystal,” Opt. Lett. 23, 1441–1443 (1998).
  10. E. Sidick, A. Knoesen, and A. Dienes, “Ultrashort-pulse second harmonic generation in quasi-phase-matched dispersive media,” Opt. Lett. 19, 266–268 (1994).
  11. E. Sidick, A. Knoesen, and A. Dienes, “Ultrashort-pulse second harmonic generation. I. Transform-limited fundamental pulses,” J. Opt. Soc. Am. B 12, 1704–1712 (1995).
  12. E. Sidick, A. Knoesen, and A. Dienes, “Ultrashort-pulse second harmonic generation. II. Non-transform-limited fundamental pulses,” J. Opt. Soc. Am. B 12, 1713–1722 (1995).
  13. E. Sidick, A. Knoesen, and A. Dienes, “Ultrashort pulse second harmonic generation in quasi-phase-matched structures,” Pure Appl. Opt. 5, 709–722 (1996).
  14. A. Knoesen, E. Sidick, and A. Dienes, in Novel Optical Materials and Applications, I.-C. Khoo, F. Simoni, and C. Umeton, eds. (Wiley, New York, 1997).
  15. J. A. Armstrong, N. Bloembergen, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127, 1918–1939 (1962).
  16. M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28, 2631–2654 (1992).
  17. T. Suhara and H. Nishihara, “Theoretical analysis of waveguide second-harmonic generation phase matched with uniform and chirped gratings,” IEEE J. Quantum Electron. 26, 1265–1276 (1990).
  18. Y. Ishigame, T. Suhara, and H. Ishihara, “LiNbO3 waveguide second-harmonic-generation device phase matched with a fan-out domain-inverted grating,” Opt. Lett. 16, 375–379 (1991).
  19. M. L. Bortz, M. Fujimura, and M. M. Fejer, “Increased acceptance bandwidth for quasi-phasematched second harmonic generation in LiNbO3 waveguides,” Electron. Lett. 30, 34–35 (1994).
  20. K. Mizuuchi, K. Yamamoto, M. Kato, and H. Sato, “Broadening of the phase-matching bandwidth in quasi-phase-matched second-harmonic generation,” IEEE J. Quantum Electron. 30, 1596–1604 (1994).
  21. K. Mizuuchi and K. Yamamoto, “Waveguide second-harmonic generation device with broadened flat quasi-phase-matched response by use of a grating structure with located phase shifts,” Opt. Lett. 23, 1880–1882 (1998).
  22. M. Cha, “Cascaded phase shift and intensity modulation in aperiodic quasi-phase-matched gratings,” Opt. Lett. 23, 250–252 (1998).
  23. M. H. Chou, K. R. Parameswaran, M. M. Fejer, and I. Brener, “Multiple channel wavelength conversion using engineered quasi-phase-matching structures in LiNbO3 waveguides,” Opt. Lett. 24, 1157–1159 (1999).
  24. M. A. Arbore, O. Marco, and M. M. Fejer, “Pulse compression during second-harmonic generation in aperiodic quasi-phase-matching gratings,” Opt. Lett. 22, 865–867 (1997).
  25. M. A. Arbore, A. Galvanauskas, D. Harter, M. H. Chou, and M. M. Fejer, “Engineerable compression of ultrashort pulses by use of second-harmonic generation in chirped-period-poled lithium niobate,” Opt. Lett. 22, 1341–1343 (1997).
  26. M. A. Arbore, “Generation and manipulation of infrared light using quasi-phasematched devices: ultrashort-pulse, aperiodic-grating and guided-wave frequency conversion,” Ph.D. dissertation (Stanford University, Stanford, Calif., 1998).
  27. A. Galvanauskas, D. Harter, M. A. Arbore, M. H. Chou, and M. M. Fejer, “Chirped-pulse-amplification circuits for fiber amplifiers, based on chirp-period quasi-phase-matching gratings,” Opt. Lett. 23, 1695–1697 (1998).
  28. A. Galvanauskas, A. Hariharan, D. Harter, A. A. Arbore, and M. M. Fejer, “Microlaser pumped, engineerable bandwidth parametric chirped-pulse amplifier using electric-field-poled LiNbO3,” in Conference on Lasers and Electro-Optics, Vol. 6 of 1998 Technical Digest Series (Optical Society of America, Washington, D.C., 1998), p. 16.
  29. P. Loza-Alvarez, D. T. Reid, P. Faller, M. Ebrahimzadeh, W. Sibbett, H. Karlsson, and F. Laurell, “Simultaneous femtosecond-pulse compression and second-harmonic generation in aperiodically poled KTiOPO4,” Opt. Lett. 24, 1071–1073 (1999).
  30. M. Hofer, M. E. Fermann, A. Galvanauskas, D. Harter, and R. S. Windeler, “Low-noise amplification of high-power pulses in multimode fibers,” IEEE Photonics Technol. Lett. 11, 650–652 (1999).
  31. G. Imeshev, A. Galvanauskas, D. Harter, M. A. Arbore, M. Proctor, and M. M. Fejer, “Engineerable femtosecond pulse shaping by second-harmonic generation with Fourier synthetic quasi-phase-matching gratings,” Opt. Lett. 23, 864–866 (1998).
  32. S. K. Kurtz, in Quantum Electronics: A Treatise, H. Rabin and C. L. Tang, eds. (Academic, New York, 1975).
  33. G. P. Agrawal, Nonlinear Fiber Optics, 2nd ed. (Academic, San Diego, Calif., 1995).
  34. G. D. Boyd and D. A. Kleinman, “Parametric interactions of focused Gaussian light beams,” J. Appl. Phys. 39, 3597–3639 (1968).
  35. D. H. Jundt, “Temperature-dependent Sellmeier equation for the index of refraction, ne, in congruent lithium niobate,” Opt. Lett. 22, 1553–1555 (1997).
  36. J.-P. Meyn and M. M. Fejer, “Tunable ultraviolet radiation by second-harmonic generation in periodically poled lithium tantalate,” Opt. Lett. 22, 1214–1216 (1997).
  37. B. Zysset, I. Biaggio, and P. Gunter, “Refractive indices of orthorhombic KNbO3. I. Dispersion and temperature dependence,” J. Opt. Soc. Am. B 9, 380–386 (1992).
  38. L. K. Cheng, L. T. Cheng, J. Galperin, P. A. Morris Hotsenpiller, and J. D. Bierlein, “Crystal growth and characterization of KTiOPO4 isomorphs from the self-fluxes,” J. Cryst. Growth 137, 107–115 (1994).
  39. D. L. Fenimore, K. L. Schepler, D. Zelmon, S. Kuck, U. B. Ramabadran, P. Von Richter, and D. Small, “Rubidium titanyl arsenate difference-frequency generation and validation of new Sellmeier coefficients,” J. Opt. Soc. Am. B 13, 1935–1940 (1996).
  40. G. Imeshev, M. A. Arbore, A. Galvanauskas, and M. M. Fejer, “Numerical simulations of ultrafast SHG with chirped QPM gratings in the pump-depleted regime,” Center for Nonlinear Optical Materials annual report (Stanford University, Stanford, Calif., 1997).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited