OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 17, Iss. 2 — Feb. 1, 2000
  • pp: 319–326

Automodulations in Kerr-lens mode-locked solid-state lasers

J. Jasapara, W. Rudolph, V. L. Kalashnikov, D. O. Krimer, I. G. Poloyko, and M. Lenzner  »View Author Affiliations

JOSA B, Vol. 17, Issue 2, pp. 319-326 (2000)

View Full Text Article

Enhanced HTML    Acrobat PDF (214 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Nonstationary pulse regimes associated with self-modulation of a Kerr-lens mode-locked Ti:sapphire laser have been studied experimentally and theoretically. Such laser regimes occur at an intracavity group delay dispersion that is smaller than or larger than what is required for stable mode locking and exhibit modulation in pulse amplitude and spectra at frequencies of several hundred kilohertz. Stabilization of such modulations, leading to an increase in the pulse peak power by a factor of 10, were accomplished by weak modulation of the pump laser with the self-modulation frequency. The main experimental observations can be explained with a round-trip model of the femtosecond laser, taking into account gain saturation, Kerr lensing, and second- and third-order dispersion.

© 2000 Optical Society of America

OCIS Codes
(270.5530) Quantum optics : Pulse propagation and temporal solitons
(320.5550) Ultrafast optics : Pulses
(320.7090) Ultrafast optics : Ultrafast lasers
(320.7160) Ultrafast optics : Ultrafast technology

J. Jasapara, W. Rudolph, V. L. Kalashnikov, D. O. Krimer, I. G. Poloyko, and M. Lenzner, "Automodulations in Kerr-lens mode-locked solid-state lasers," J. Opt. Soc. Am. B 17, 319-326 (2000)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. W. Castner, J. J. Korpershoek, and D. A. Wiersma, “Experimental and theoretical analysis of linear femtosecond dye lasers,” Opt. Commun. 78, 90–99 (1990). [CrossRef]
  2. T. Tsang, “Observation of high-order solitons from a mode-locked Ti:sapphire laser,” Opt. Lett. 18, 293–295 (1993). [CrossRef] [PubMed]
  3. F. W. Wise, I. A. Walmsley, and C. L. Tang, “Simultaneous formation of solitons and dispersive waves in a femtosecond dye ring laser,” Opt. Lett. 13, 129–131 (1988). [CrossRef]
  4. V. Petrov, W. Rudolph, U. Stamm, and B. Wilhelmi, “Limits of ultrashort pulse generation in cw modelocked dye lasers,” Phys. Rev. A 40, 1474–1483 (1989). [CrossRef] [PubMed]
  5. Q. R. Xing, W. L. Zhang, and K. M. Yoo, “Self-Q-switched self-modelocked Ti:sapphire laser,” Opt. Commun. 119, 113–116 (1995). [CrossRef]
  6. A. Baltuska, Z. Wei, M. S. Pshenichnikov, D. A. Wiersma, and R. Szipöcs, “All solid-state cavity dumped sub-5-fs laser,” Appl. Phys. B 65, 175–188 (1997). [CrossRef]
  7. D. Cote and H. M. van Driel, “Period doubling of a femtosecond Ti:sapphire laser by total mode locking,” Opt. Lett. 23, 715–717 (1998). [CrossRef]
  8. S. R. Bolton, R. A. Jenks, C. N. Elkinton, and G. Sucha, “Pulse-resolved measurements of subharmonic oscillations in a Kerr-lens mode-locked Ti:sapphire laser,” J. Opt. Soc. Am. B 16, 339–344 (1999). [CrossRef]
  9. J. C. Diels and W. Rudolph, Ultrashort Laser Pulse Phenomena (Academic, San Diego, Calif., 1996).
  10. H. Haus, “Theory of mode locking with a fast saturable absorber,” J. Appl. Phys. 46, 3049–3058 (1975). [CrossRef]
  11. D. Kühlke, W. Rudolph, and B. Wilhelmi, “Calculation of the colliding pulse mode-locking in CW dye ring lasers,” IEEE J. Quantum Electron. QE-19, 526–533 (1983). [CrossRef]
  12. H. A. Haus, J. G. Fujimoto, and E. P. Ippen, “Analytic theory of additive pulse and Kerr lens mode locking,” IEEE J. Quantum Electron. 28, 2086–2096 (1992). [CrossRef]
  13. T. Brabec, Ch. Spielmann, P. F. Curley, and F. Krausz, “Kerr lens mode locking,” Opt. Lett. 17, 1292–1294 (1992). [CrossRef] [PubMed]
  14. J. L. A. Chilla and O. E. Martinez, “Spatial-temporal analysis of the self-mode-locked Ti:sapphire laser,” J. Opt. Soc. Am. B 10, 638–643 (1993). [CrossRef]
  15. V. Magni, G. Cerullo, S. de Silvestri, and A. Monguzzi, “Astigmatism in Gaussian-beam self-focusing and in resonators for Kerr-lens mode locking,” J. Opt. Soc. Am. B 12, 476–485 (1995). [CrossRef]
  16. V. P. Kalosha, M. Müller, J. Herrmann, and G. Gatz, “Spatiotemporal model of femtosecond pulse generation in Kerr-lens mode-locked solid-state lasers,” J. Opt. Soc. Am. B 15, 535–550 (1998). [CrossRef]
  17. V. L. Kalashnikov, I. G. Poloyko, V. P. Mikhailov, and D. von der Linde, “Regular, quasi-periodic, and chaotic behavior in continuous-wave solid-state Kerr-lens mode-locked lasers,” J. Opt. Soc. Am. B 14, 2691–2695 (1997). [CrossRef]
  18. V. L. Kalashnikov, V. P. Kalosha, I. G. Poloyko, V. P. Mikhailov, M. I. Demchuk, I. G. Koltchanov, and H. J. Eichler, “Frequency-shift locking of continuous-wave solid-state lasers,” J. Opt. Soc. Am. B 12, 2078–2082 (1995). [CrossRef]
  19. F. X. Kärtner, I. D. Jung, and U. Keller, “Soliton mode locking with saturable absorbers: theory and experiments,” IEEE J. Sel. Top. Quantum Electron. 2, 540–556 (1996). [CrossRef]
  20. J. Herrmann, “Theory of Kerr-lens mode locking: role of self-focusing and radially varying gain,” J. Opt. Soc. Am. B 11, 498–512 (1994). [CrossRef]
  21. A. M. Sergeev, E. V. Vanin, and F. W. Wise, “Stability of passively modelocked lasers with fast saturable absorbers,” Opt. Commun. 140, 61–64 (1997). [CrossRef]
  22. V. L. Kalashnikov, V. P. Kalosha, I. G. Poloyko, and V. P. Mikhailov, “New principle of formation of ultrashort pulses in solid-state lasers with self-phase-modulation and gain saturation,” Quantum Electron. 26, 236–242 (1996). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited