OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 17, Iss. 2 — Feb. 1, 2000
  • pp: 327–331

Conductivity artifacts in optical-pump THz-probe measurements of YBa2Cu3O7

Richard D. Averitt, George Rodriguez, Jennifer L. W. Siders, Stuart A. Trugman, and Antoinette J. Taylor  »View Author Affiliations

JOSA B, Vol. 17, Issue 2, pp. 327-331 (2000)

View Full Text Article

Enhanced HTML    Acrobat PDF (163 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Transient changes in the complex conductivity of the high-temperature superconductor YBa2Cu3O7 have been measured with optical-pump THz-probe spectroscopy. Artifacts in the conductivity arise when optical excitation induces changes in the material response that occur on a time scale comparable with or faster than the THz pulse width. A model is presented that agrees with experiments and provides insight in distinguishing between artifacts and real features in transient conductivity measurements.

© 2000 Optical Society of America

OCIS Codes
(260.3090) Physical optics : Infrared, far
(300.6270) Spectroscopy : Spectroscopy, far infrared
(320.0320) Ultrafast optics : Ultrafast optics
(320.5390) Ultrafast optics : Picosecond phenomena

Richard D. Averitt, George Rodriguez, Jennifer L. W. Siders, Stuart A. Trugman, and Antoinette J. Taylor, "Conductivity artifacts in optical-pump THz-probe measurements of YBa2Cu3O7," J. Opt. Soc. Am. B 17, 327-331 (2000)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T.-I. Jeon and D. Grischkowsky, “Nature of conduction in doped silicon,” Phys. Rev. Lett. 78, 1106–1109 (1997). [CrossRef]
  2. B. N. Flanders, R. A. Cheville, D. Grischkowsky, and N. F. Scherer, “Pulsed terahertz transmission spectroscopy of liquid CHCl3,  CCl4, and their mixtures,” J. Phys. Chem. 100, 11824–11835 (1996). [CrossRef]
  3. C. Rønne, P.-O. Åstrand, and S. R. Keiding, “THz spectroscopy of liquid H2O and D2O,” Phys. Rev. Lett. 82, 2888–2891 (1999). [CrossRef]
  4. R. H. M. Groeneveld and D. Grischkowsky, “Picosecond time-resolved far-infrared experiments on carriers and excitons in GaAs–AlGaAs multiple quantum wells,” J. Opt. Soc. Am. B 11, 2502–2507 (1994). [CrossRef]
  5. B. B. Hu, E. A. de Souza, W. H. Knox, J. E. Cunningham, M. C. Nuss, A. V. Kuznetsov, and S. L. Chuang, “Identifying the distinct phases of carrier transport in semiconductors with 10 fs resolution,” Phys. Rev. Lett. 74, 1689–1692 (1995). [CrossRef] [PubMed]
  6. S. S. Prabhu, S. E. Ralph, M. R. Melloch, and E. S. Harmon, “Carrier dynamics of low-temperature-grown GaAs observed via THz spectroscopy,” Appl. Phys. Lett. 70, 2419–2421 (1997). [CrossRef]
  7. J. L. W. Siders, R. N. Jacobs, C. W. Siders, S. A. Trugman, and A. J. Taylor, “Nonequilibrium superconductivity and quasiparticle dynamics in YBa2Cu3O7,” in Ultrafast Phenomena XI, T. Elsaesser, J. G. Fujimoto, D. A. Wiersma, and W. Zinth, eds. (Springer, New York, 1998).
  8. A. J. Taylor, G. Rodriguez, J. L. W. Siders, C. W. Siders, and S. A. Trugman, “Nonequilibrium superconductivity and quasiparticle dynamics in YBa2Cu3O7–δ,” Quantum Electronics and Laser Science Conference, Paper QWC1, Postconference ed., 1999 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1999) pp. 118–119.
  9. A. Nahata, A. S. Weling, and T. F. Heinz, “A wideband coherent terahertz spectroscopy system using optical rectification and electro-optic sampling,” Appl. Phys. Lett. 69, 2321–2323 (1996). [CrossRef]
  10. Q. Wu and X.-C. Zhang, “Free-space electro-optic sampling of terahertz beams,” Appl. Phys. Lett. 67, 3523–3525 (1995). [CrossRef]
  11. T. J. Carrig, G. Rodriguez, T. S. Clement, and A. J. Taylor, “Generation of terahertz radiation using electro-optic crystal mosaics,” Appl. Phys. Lett. 66, 10–12 (1995). [CrossRef]
  12. Q. Wu and X.-C. Zhang, “7 terahertz broadband GaP electro-optic sensor,” Appl. Phys. Lett. 70, 1784–1786 (1997). [CrossRef]
  13. A. J. Berlinsky, C. Kallin, G. Rose, and A.-C. Shi, “Two-fluid interpretation of the conductivity of clean BCS superconductors,” Phys. Rev. B 48, 4074–4079 (1993). [CrossRef]
  14. S. D. Brorson, R. Buhleier, I. E. Trofimov, J. O. White, Ch. Ludwig, F. F. Balakirev, H.-U. Habermeier, and J. Kuhl, “Electrodynamics of high-temperature superconductors investigated with coherent terahertz pulse spectroscopy,” J. Opt. Soc. Am. B 13, 1979–1993 (1996). [CrossRef]
  15. A. Frenkel, F. Gao, Y. Liu, J. F. Whitaker, C. Uher, S. Y. Hou, and J. M. Phillips, “Conductivity peak, relaxation dynamics, and superconducting gap of YBa2Cu3O7 studied by terahertz and femtosecond optical spectroscopies,” Phys. Rev. B 54, 1355–1365 (1996). [CrossRef]
  16. J. R. Waldram, P. Theopistou, A. Porch, and H.-M. Cheah, “Two-fluid interpretation of the microwave conductivity of YBa2Cu3O7–δ,” Phys. Rev. B 55, 3222–3229 (1997). [CrossRef]
  17. A. Pimenov, A. Loidl, G. Jakob, and H. Adrian, “Optical conductivity in YBa2Cu3O7–δ thin films,” Phys. Rev. B 59, 4390–4393 (1999). [CrossRef]
  18. There is ambiguity in defining the relative arrival time between the optical and THz pulses: We define t=0 as when the optical pulse coincides with the trailing edge of the THz pulse as estimated a posteriori from the simulations.
  19. S. I. Anisimov, B. L. Kapeliovich, and T. L. Perel’man, “Electron emission from metal surfaces exposed to ultrashort laser pulses,” Sov. Phys. JETP 39, 375–377 (1974), also Zh. Eksp. Teor. Fiz. 66, 776–781 (1974).
  20. J. T. Kindt and C. A. Schmuttenmaer, “Theory for determination of the low-frequency time-dependent response function in liquids using time-resolved terahertz pulse spectroscopy,” J. Chem. Phys. 110, 8589–8596 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited