OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 17, Iss. 3 — Mar. 1, 2000
  • pp: 373–380

Holographic index-contrast prediction in a photorefractive polymer composite based on electric-field-induced birefringence

John D. Shakos, Mark D. Rahn, Dave P. West, and Kaleemullah Khand  »View Author Affiliations

JOSA B, Vol. 17, Issue 3, pp. 373-380 (2000)

View Full Text Article

Enhanced HTML    Acrobat PDF (181 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The physical properties of a hologram written in a photorefractive polymer composite are predicted from a macroscopic model based on ellipsometry. An electric poling field increases the birefringence of the composite. The way that the bulk birefringence changes with the electric field is used to predict the holographic index contrast, and, by comparison with experiment, accurate deductions of the holographic space-charge field are made. A photorefractive polymer composite was used that contained 47.5 wt. % 1-(2-Ethylhexyloxy)2,5-dimethyl-4-(4 nitrophenylazo)benzene electro-optic dye. When sinusoidal modulation in optical intensity is used with high contrast, the higher spatial harmonics of the modulation of the holographic space-charge field become important. The amplitude of the first-order modulation in the space-charge field is accordingly reduced by 13% relative to the predictions of the standard model of photorefractivity in the case of a high-saturation field.

© 2000 Optical Society of America

OCIS Codes
(160.5320) Materials : Photorefractive materials
(160.5470) Materials : Polymers
(190.5330) Nonlinear optics : Photorefractive optics
(210.4770) Optical data storage : Optical recording
(260.1440) Physical optics : Birefringence

John D. Shakos, Mark D. Rahn, Dave P. West, and Kaleemullah Khand, "Holographic index-contrast prediction in a photorefractive polymer composite based on electric-field-induced birefringence," J. Opt. Soc. Am. B 17, 373-380 (2000)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. F. H. Mok, G. W. Burr, and D. Psaltis, “System metric for holographic memory systems,” Opt. Lett. 21, 896–898 (1996). [CrossRef] [PubMed]
  2. W. E. Moerner, S. M. Silence, F. Hache, and G. C. Bjorklund, “Orientationally enhanced photorefractive effect in polymers,” J. Opt. Soc. Am. B 11, 320–330 (1994). [CrossRef]
  3. Many studies, including Ref. 2, the more recent publication of J. A. Herlocker et al. [J. A. Herlocker, K. B. Ferrio, E. Hendrickx, B. D. Geunther, S. Mery, B. Kippelen, and N. Peyghambarian, “Direct observation of orientation limit in a fast photorefractive polymer composite,” Appl. Phys. Lett. 74, 2253–2255 (1999)] and references therein, maintain arbitrary units for birefringence and holographic index contrast. [CrossRef]
  4. N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, “Holographic storage in electro-optic crystals. I. Steady-state,” Ferroelectrics 22, 949–960 (1979). [CrossRef]
  5. G. G. Malliaras, V. V. Krasnikov, H. J. Bolink, and G. Hadziioannou, “Control of charge trapping in a photorefractive polymer,” Appl. Phys. Lett. 66, 1038–1040 (1995); see also D. D. Nolte, “Photorefractive transport and multi-wave mixing,” in Photorefractive Effects and Materials, D. D. Nolte, ed. (Kluwer Academic, Dordrecht, The Netherlands, 1995), Chap. 1, pp. 12–17. [CrossRef]
  6. A. M. Cox, R. D. Blackburn, D. P. West, T. A. King, F. A. Wade, and D. A. Leigh, “Crystallization-resistant photorefractive polymer composite with high diffraction efficiency and reproducibility,” Appl. Phys. Lett. 68, 2801–2803 (1996). [CrossRef]
  7. J. D. Shakos, A. M. Cox, D. P. West, K. S. West, F. A. Wade, T. A. King, and R. D. Blackburn, “Processes limiting the rate of response in photorefractive composites,” Opt. Commun. 150, 230–234 (1998). [CrossRef]
  8. K. S. West, D. P. West, M. D. Rahn, J. D. Shakos, F. A. Wade, K. Khand, and T. A. King, “Photorefractive polymer composite trapping properties and a link with chromophore structure,” J. Appl. Phys. 84, 5893–5899 (1998). [CrossRef]
  9. M. D. Rahn, D. P. West, K. Khand, J. D. Shakos, R. M. Shelby, “High optical quality and fast response speed holographic data storage in a photorefractive polymer,” submitted to J. Appl. Phys.
  10. S. Ducharme, J. C. Scott, R. J. Twieg, and W. E. Moerner, “Observation of the photorefractive effect in a polymer,” Phys. Rev. Lett. 66, 1846–1849 (1991). [CrossRef] [PubMed]
  11. W. E. Moerner, A. Grunnet-Jepsen, and C. L. Thompson, “Photorefractive polymers,” Annu. Rev. Mater. Sci. 27, 585–623 (1997). [CrossRef]
  12. Z. Sekkat and W. Knoll, “Stationary state and dynamics of birefringence and nonlinear optical properties induced by electric field poling in polymeric films,” Ber. Bunsenges. Phys. Chem. 98, 1231–1242 (1994). [CrossRef]
  13. M. G. Kuzyk and C. Poga, “Quadratic electro-optics of guest-host polymers,” in Molecular Nonlinear Optics, J. Zyss, ed. (Academic, San Diego, Calif., 1994), p. 327.
  14. H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited