OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 17, Iss. 4 — Apr. 1, 2000
  • pp: 618–628

Soliton squeezing and the continuum

H. A. Haus and C. X. Yu  »View Author Affiliations

JOSA B, Vol. 17, Issue 4, pp. 618-628 (2000)

View Full Text Article

Acrobat PDF (215 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We review soliton perturbation theory with renormalized soliton operators. We analytically evaluate the effects of the continuum on squeezing. Our results show that the contribution that is due to the continuum exhibits an oscillatory behavior and can be beneficial to squeezing.

© 2000 Optical Society of America

OCIS Codes
(270.5290) Quantum optics : Photon statistics
(270.5530) Quantum optics : Pulse propagation and temporal solitons
(270.6570) Quantum optics : Squeezed states

H. A. Haus and C. X. Yu, "Soliton squeezing and the continuum," J. Opt. Soc. Am. B 17, 618-628 (2000)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. P. D. Drummond and S. J. Carter, “Quantum-field theory of squeezing in solitons,” J. Opt. Soc. Am. B 4, 1565–1573 (1987).
  2. Y. Lai and H. A. Haus, “Quantum theory of solitons in optical fibers. I. Time-dependent Hartree approximation,” Phys. Rev. A 40, 844–853 (1989); “Quantum theory of soli-tons in optical fibers. II. Exact solution,” Phys. Rev. A 40, 854–866 (1989).
  3. H. A. Haus and Y. Lai, “Quantum theory of soliton squeezing: a linearized approach,” J. Opt. Soc. Am. B 7, 386–392 (1990).
  4. Y. Lai, “Quantum theory of soliton propagation: a unified approach based on the linearization approximation,” J. Opt. Soc. Am. B 10, 475–484 (1993).
  5. F. X. Kärtner and L. Boivin, “Quantum noise of the fundamental soliton,” Phys. Rev. A 53, 454–466 (1996)
  6. J. M. Fini, P. L. Hagelstein, and H. A. Haus, “Agreement of stochastic soliton formalism with second-quantized and configuration-space models,” Phys. Rev. A (to be published).
  7. S. J. Carter and P. D. Drummond, “Squeezed quantum solitons and Raman noise,” Phys. Rev. Lett. 67, 3757–3760 (1991).
  8. D. Yao, “Quantum fluctuations of optical solitons with optical pulses,” Phys. Rev. A 52, 4871–4881 (1995).
  9. E. Wright, “Quantum theory of soliton propagation in an optical fiber using the Hartree approximation,” Phys. Rev. A 43, 3836–3844 (1991).
  10. P. Hagelstein, “Application of a photon configuration-space model to soliton propagation in a fiber,” Phys. Rev. A 54, 2426–2438 (1996).
  11. S. Carter, P. Drummond, M. Reid, and R. Shelby, “Squeezing of quantum solitons,” Phys. Rev. Lett. 58, 1841–1844 (1987).
  12. Y. Lai and S. Yu, “General quantum theory of nonlinear optical pulse propagation,” Phys. Rev. A 51, 817–829 (1995).
  13. M. Rosenbluh and R. M. Shelby, “Squeezed optical solitons,” Phys. Rev. Lett. 66, 153–156 (1991).
  14. H. A. Haus and J. A. Mullen, “Quantum noise in linear amplifiers,” Phys. Rev. 128, 2407–2415 (1962).
  15. H. A. Haus and Y. Yamamoto, “Quantum circuit theory of phase-sensitive linear systems,” QE-23, 212–221 (1987).
  16. M. Margalit and H. A. Haus, “Accounting for the continuum in the analysis of squeezing with solitons,” J. Opt. Soc. Am. B 15, 1387–1391 (1998).
  17. D. Krylov and K. Bergman, “Amplitude-squeezed solitons from an asymmetric fiber interferometer,” Opt. Lett. 23, 1390–1392 (1998).
  18. S. Spalter, N. Korolkova, F. Konig, A. Sizmann, and G. Leuchs, “Observation of multimode quantum correlations in fiber optical solitons,” Phys. Rev. Lett. 81, 786–788 (1998).
  19. S. Schmitt, J. Ficker, M. Wolff, F. Konig, A. Sizmann, and G. Leuchs, “Photon-number squeezed solitons from an asymmetric fiber-optic Sagnac interferometer,” Phys. Rev. Lett. 81, 2446–2449 (1998).
  20. D. Levandovsky, M. Vasilyev, and P. Kumar, “Perturbation theory of quantum solitons: continuum evolution and optimum squeezing by spectral filtering,” Opt. Lett. 24, 43–45 (1999).
  21. D. Levandovsky, M. Vasilyev, and P. Kumar, “Soliton squeezing in a highly transmissive nonlinear optical loop mirror,” Opt. Lett. 24, 89–91 (1999).
  22. J. P. Gordon, “Dispersive perturbations of the nonlinear Schrödinger equations,” J. Opt. Soc. Am. B 9, 91–97 (1992).
  23. L. D. Landau and E. M. Lifshitz, Quantum Mechanics, Nonrelativistic Theory, translated by J. B. Sakes and J. S. Bell (Pergamon, London, 1958).
  24. K. Bergman and H. A. Haus, “Squeezing in fibers with optical pulses,” Opt. Lett. 16, 373–375 (1989).
  25. C. Doerr, M. Shirasaki, and F. Khatri, “Simulation of pulsed squeezing in optical fiber with chromatic dispersion,” J. Opt. Soc. Am. B 11, 143–149 (1994).
  26. A. M. Weiner, J. P. Heritage, and E. M. Kirschner, “High resolution femtosecond pulse shaping,” J. Opt. Soc. Am. B 5, 1563–1572 (1988).
  27. H. A. Haus, W. S. Wong, and F. I. Khatri, “Continuum generation by perturbation of solitons,” J. Opt. Soc. Am. B 14, 304–313 (1997).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited