OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 17, Iss. 5 — May. 1, 2000
  • pp: 805–808

Improved attenuated-total-reflection technique for measuring the electro-optic coefficients of nonlinear optical polymers

Yi Jiang, Zhuangqi Cao, Qishun Shen, Xiaoming Dou, Yingli Chen, and Yukihiro Ozaki  »View Author Affiliations

JOSA B, Vol. 17, Issue 5, pp. 805-808 (2000)

View Full Text Article

Enhanced HTML    Acrobat PDF (132 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A new technique for measuring the electro-optic coefficient of nonlinear optical polymer is described. In an attenuated-total-reflection experiment the refractive index of the poled polymer is changed because of the Pockels effect. This change causes a shift of the angular position of the surface plasmon modes that corresponds to a change in reflectivity at a fixed angle. By measuring the change of the light reflectivity at the properly chosen angle one can calculate the electro-optic coefficient of the poled polymer. Compared with other, conventional methods, here the electro-optic coefficients are given in a simpler form and the required parameters are easier to measure. The commonly used lock-in amplifier is not required. This technique is a highly sensitive method for measuring the electro-optic coefficient because of the newly chosen working interior angle for which a tiny change in the refractive index leads to a large change in reflectivity.

© 2000 Optical Society of America

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(250.2080) Optoelectronics : Polymer active devices
(310.6860) Thin films : Thin films, optical properties

Yi Jiang, Zhuangqi Cao, Qishun Shen, Xiaoming Dou, Yingli Chen, and Yukihiro Ozaki, "Improved attenuated-total-reflection technique for measuring the electro-optic coefficients of nonlinear optical polymers," J. Opt. Soc. Am. B 17, 805-808 (2000)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. Burzynski, B. P. Singh, P. N. Prasad, R. Zanoni, and G. I. Stegeman, “Nonlinear optical processes in a polymer waveguide: grating coupler measurements of electronic and thermal nonlinearities,” Appl. Phys. Lett. 53, 2011–2013 (1988). [CrossRef]
  2. Y. Jiang, Z. Cao, and Y. Cheng, “Digital measurements of propagation loss in optical organic polymer waveguides,” in Integrated Optoelectronics II, R. T. Chen and B. Zhou, eds., Proc. SPIE 3551, 87–91 (1998). [CrossRef]
  3. M. Sinclair, D. McBranch, D. Moses, and A. J. Heeger, “Time-resolved waveguide modulation of a conjugated polymer,” Appl. Phys. Lett. 53, 2374–2376 (1988). [CrossRef]
  4. D. Chen, H. R. Fetterman, A. Chen, W. H. Steier, L. R. Dalton, W. Wang, and Y. Shi, “Demonstration of 110-GHz electro-optic polymer modulators,” Appl. Phys. Lett. 70, 3335–3337 (1997). [CrossRef]
  5. F. Michelotti, T. Gabler, H. Horhöld, R. Waldhausl, and A. Bräuer, “Prism coupling in DMOP-PPV optical waveguides,” Opt. Commun. 114, 247–254 (1995). [CrossRef]
  6. R. Blum, M. Sprave, J. Sablotny, and M. Eich, “High-electric-field poling of nonlinear optical polymers,” J. Opt. Soc. Am. B 15, 318–328 (1998). [CrossRef]
  7. D. M. Burland, R. D. Miller, and C. A. Walsh, “Second-order nonlinearity in poled-polymer systems,” Chem. Rev. 94, 31–39 (1994). [CrossRef]
  8. J. S. Schildkraut, “Determination of the electro-optic coeffi-cient of a poled polymer film,” Appl. Opt. 29, 2839–2841 (1990). [CrossRef] [PubMed]
  9. F. Wang, E. Furman, and G. H. Haertling, “Electro-optic measurements of thin-film materials by means of reflection differential ellipsometry,” J. Appl. Phys. 78, 9–15 (1995). [CrossRef]
  10. C. C. Teng and H. T. Man, “Simple reflection technique for measuring the electro-optic coefficient of poled polymers,” Appl. Phys. Lett. 56, 1734–1736 (1990). [CrossRef]
  11. F. Qiu, K. Misawa, X. Cheng, A. Ueki, and T. Kobayashi, “Determination of complex tensor components of electro-optic constants of dye-doped polymer film with a Mach–Zehnder interferometer,” Appl. Phys. Lett. 65, 1605–1607 (1994). [CrossRef]
  12. Ph. Pre⁁tre, L. M. Wu, R. A. Hill, and A. Knoesen, “Characterization of electro-optic polymer films by use of decal-deposited reflection Fabry–Perot microcavities,” J. Opt. Soc. Am. B 15, 379–392 (1998). [CrossRef]
  13. Y. Wang and H. J. Simon, “Electrooptic reflection with surface plasmons,” Opt. Quantum Electron. 25, 925–933 (1993). [CrossRef]
  14. H. G. Winfried, G. Horsthuis, and J. M. Krijnen, “Simple measuring method for electro-optic coefficients in poled polymer waveguides,” Appl. Phys. Lett. 55, 616–618 (1989). [CrossRef]
  15. E. V. Tomme, P. V. Daele, R. G. Baets, and P. E. Lagasse, “Integrated optic devices based on nonlinear optical polymers,” IEEE J. Quantum Electron. 27, 778–786 (1991). [CrossRef]
  16. A. Yariv and P. Yeh, Optical Waves in Crystals (Wiley, New York, 1984), Chap. 7.
  17. I. P. Kaminow, W. L. Mamel, and H. P. Weber, “Metal-clad optical waveguides: analytical and experimental study,” Appl. Opt. 13, 396–405 (1974). [CrossRef] [PubMed]
  18. V. Dentan, Y. Levy, M. Dumont, P. Robin, and E. Chastaing, “Electrooptic properties of a ferroelectric polymer studied by attenuated total reflection,” Opt. Commun. 69, 379–383 (1989). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited