OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 17, Iss. 6 — Jun. 1, 2000
  • pp: 1039–1050

Theory of atom guidance in a hollow laser beam: dressed-atom approach

Xinye Xu, Yuzhu Wang, and Wonho Jhe  »View Author Affiliations

JOSA B, Vol. 17, Issue 6, pp. 1039-1050 (2000)

View Full Text Article

Enhanced HTML    Acrobat PDF (265 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a general theory of atom guiding in a blue-detuned hollow laser beam. Using the dressed-atom approach, we obtain the mean dipole gradient force, the radiation pressure force, and the momentum diffusion coefficients for three-level Λ-type cold atoms. Using Monte Carlo simulation, we calculate the guiding efficiencies and the final velocity distributions of atoms for various conditions. We find that the guiding efficiency depends not only on the intensity and detuning of the guiding hollow beam but also on the atom-guiding direction with respect to the propagation direction of the hollow laser beam. Comparing our analyses with recent experimental results, we find that they are mutually consistent. The results that we present can also be applied to atom guiding by hollow optical fibers.

© 2000 Optical Society of America

OCIS Codes
(000.4430) General : Numerical approximation and analysis
(060.2310) Fiber optics and optical communications : Fiber optics
(140.3320) Lasers and laser optics : Laser cooling
(230.7370) Optical devices : Waveguides
(270.0270) Quantum optics : Quantum optics
(270.6620) Quantum optics : Strong-field processes
(300.6210) Spectroscopy : Spectroscopy, atomic

Xinye Xu, Yuzhu Wang, and Wonho Jhe, "Theory of atom guidance in a hollow laser beam: dressed-atom approach," J. Opt. Soc. Am. B 17, 1039-1050 (2000)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. Cook and R. Hill, “An electromagnetic mirror for neutral atoms,” Opt. Commun. 43, 258–262 (1982). [CrossRef]
  2. M. A. Ol’Shanii, Yu. B. Ovchinnikov, and V. S. Letokhov, “Laser guiding of atoms in a hollow optical fiber,” Opt. Commun. 98, 77–79 (1993). [CrossRef]
  3. S. Marksteiner, C. M. Savage, P. Zoller, and S. Rolston, “Coherent atomic waveguides from hollow optical fibers: quantized atomic motion,” Phys. Rev. A 50, 2680–2690 (1994). [CrossRef] [PubMed]
  4. W. Jhe, M. Ohtsu, H. Hori, and S. R. Friberg, “Atomic waveguide using evanescent waves near optical fibers,” Jpn. J. Appl. Phys. 33, L1680–L1682 (1994). [CrossRef]
  5. M. J. Renn, D. Montgomery, O. Vdovin, D. Z. Anderson, C. E. Wieman, and E. A. Cornell, “Laser-guided atoms in hollow-core optical fibers,” Phys. Rev. Lett. 75, 3253–3256 (1995). [CrossRef] [PubMed]
  6. H. Ito, K. Sakaki, W. Jhe, and M. Ohtsu, “Evanescent-light induced atom-guidance using a hollow optical fiber with light coupled sideways,” Opt. Commun. 141, 43–47 (1997). [CrossRef]
  7. M. J. Renn, E. A. Donley, E. A. Cornell, C. E. Wieman, and D. Z. Anderson, “Evanescent-wave guiding of atoms in hollow optical fibers,” Phys. Rev. A 53, R648–R651 (1996). [CrossRef] [PubMed]
  8. V. I. Balykin, D. V. Laryushin, M. V. Subbotin, and V. S. Letokhov, “Increase of the atomic phase density in a hollow laser waveguide,” JETP Lett. 63, 802–807 (1996). [CrossRef]
  9. H. Ito, T. Nakata, K. Sakaki, M. Ohtsu, K. I. Lee, and W. Jhe, “Laser spectroscopy of atoms guiding by evanescent waves in micron-sized hollow optical fibers,” Phys. Rev. Lett. 76, 4500–4503 (1996). [CrossRef] [PubMed]
  10. M. J. Renn, A. Z. Zozulya, E. A. Donley, E. A. Cornell, and D. Z. Anderson, “Optical-dipole-force fiber guiding and heating of atoms,” Phys. Rev. A 55, 3684–3696 (1997). [CrossRef]
  11. H. Ito, K. Sakaki, M. Ohtsu, and W. Jhe, “Evanescent-light guiding of atoms through hollow optical fiber for optically controlled atomic deposition,” Appl. Phys. Lett. 70, 2496–2498 (1997). [CrossRef]
  12. M. V. Subbotin, V. I. Balykin, D. V. Laryushin, and V. S. Letokhov, “Laser controlled atom waveguide as a source of ultracold atoms,” Opt. Commun. 139, 107–116 (1997). [CrossRef]
  13. T. Kuga, Y. Torii, N. Shiokawa, T. Hirano, Y. Shimizu, and H. Sasada, “Novel optical trap of atoms with a doughnut beam,” Phys. Rev. Lett. 78, 4713–4716 (1997). [CrossRef]
  14. Yu. B. Ovchinnikov, I. Manek, and R. Grimm, “Surface trap for Cs atoms based on evanescent-wave cooling,” Phys. Rev. Lett. 79, 2225–2228 (1997). [CrossRef]
  15. J. Yin, H. Noh, K. Lee, K. Kim, Y. Wang, and W. Jhe, “Generation of a dark hollow beam by a small hollow fiber,” Opt. Commun. 138, 287–292 (1997). [CrossRef]
  16. S. Kuppens, M. Rauner, M. Schiffer, K. Sengstock, and W. Ertmer, “Polarization-gradient cooling in a strong doughnut-mode dipole potential,” Phys. Rev. A 58, 3068–3079 (1998). [CrossRef]
  17. X. Y. Xu, V. G. Minogin, K. Lee, Y. Z. Wang, and W. Jhe, “Guiding cold atoms in a hollow laser beam,” Phys. Rev. A 60, 4796–4804 (1999). [CrossRef]
  18. O. Morsch and D. R. Meacher, “Proposal for an optical funnel trap,” Opt. Commun. 148, 49–53 (1998). [CrossRef]
  19. J. Söding, R. Grimm, and Yu. B. Ovchinnikov, “Gravitational laser trap for atoms with evanescent-wave cooling,” Opt. Commun. 119, 652–662 (1995). [CrossRef]
  20. J. Yin, Y. Zhu, W. Jhe, and Y. Wang, “Atom guiding and cooling in a dark hollow laser beam,” Phys. Rev. A 58, 509–513 (1998). [CrossRef]
  21. J. Yin, Y. Zhu, W. Wang, Y. Wang, and W. Jhe, “Optical potential for atom guidance in a dark hollow laser beam,” J. Opt. Soc. Am. B 15, 25–33 (1998). [CrossRef]
  22. C. Cohen-Tannoudji, J. Dupont-Roc, and G. Grynberg, Atom–Photon Interactions, Basic Processes and Applications (Wiley, New York, 1992).
  23. J. Dalibard and C. Cohen-Tannoudji, “Dressed-atom approach to atomic motion in laser light: the dipole force revisited,” J. Opt. Soc. Am. B 2, 1707–1720 (1985). [CrossRef]
  24. V. G. Minogin and V. S. Letokhov, Laser Light Pressure on Atoms (Gordon & Breach, New York, 1987).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited