OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 17, Iss. 7 — Jul. 1, 2000
  • pp: 1211–1215

Self-scanning of isolated spots in a nonlinear optical system with two-dimensional feedback

Yoshio Hayasaki, Hirotsugu Yamamoto, and Nobuo Nishida  »View Author Affiliations

JOSA B, Vol. 17, Issue 7, pp. 1211-1215 (2000)

View Full Text Article

Enhanced HTML    Acrobat PDF (235 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Isolated spots, which are spatially solitary states, are triggered at the desired positions by a control light in a nonlinear optical system with two-dimensional feedback. They exist because of the balance between isotropic transverse couplings of diffraction and an automatic regulation of feedback-loop gain owing to a simple low-cut spatial frequency filter. Self-scanning of isolated spots is caused by slight unisotropic transverse couplings without a special scanning mechanism. It provides a novel method for image display and image delay.

© 2000 Optical Society of America

OCIS Codes
(190.1450) Nonlinear optics : Bistability
(190.4420) Nonlinear optics : Nonlinear optics, transverse effects in
(190.5940) Nonlinear optics : Self-action effects

Yoshio Hayasaki, Hirotsugu Yamamoto, and Nobuo Nishida, "Self-scanning of isolated spots in a nonlinear optical system with two-dimensional feedback," J. Opt. Soc. Am. B 17, 1211-1215 (2000)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Kreuzer, W. Balzer, and T. Tschudi, “Formation of spatial structures in bistable optical elements containing nematic liquid crystals,” Appl. Opt. 29, 579–582 (1990). [CrossRef] [PubMed]
  2. F. T. Arecchi, G. Giacomelli, P. L. Ramazza, and S. Residori, “Experimental evidence of chaotic itinerancy and spatiotemporal chaos in optics,” Phys. Rev. Lett. 65, 2531–2534 (1990). [CrossRef] [PubMed]
  3. G. D’Alessandro and W. J. Firth, “Spontaneous hexagon formation in a nonlinear optical medium with feedback mirror,” Phys. Rev. Lett. 66, 2597–2600 (1991). [CrossRef] [PubMed]
  4. R. Macdonald and H. J. Eichler, “Spontaneous optical pattern formation in a nematic liquid crystal with feedback mirror,” Opt. Commun. 89, 289–295 (1992). [CrossRef]
  5. E. Ciaramella, M. Tamburrini, and E. Santamoto, “Talbot assisted hexagonal beam patterning in a thin liquid crystal film with a single feedback mirror at negative distance,” Appl. Phys. Lett. 63, 1604–1606 (1993). [CrossRef]
  6. T. Honda, “Hexagonal pattern formation due to counterpropagation in KnBO3,” Opt. Lett. 18, 598–600 (1993). [CrossRef]
  7. P. P. Banerjee, H. L. Yu, D. A. Gregory, N. Kukhtarev, and H. J. Caufield, “Self-organization of scattering in photorefractive KNbO3 into a reconfigurable hexagonal spot array,” Opt. Lett. 20, 10–12 (1995). [CrossRef] [PubMed]
  8. S. A. Akhmanov, M. A. Vorontsov, V. Yu. Ivanov, A. V. Larichev, and N. I. Zheleznykh, “Controlling transverse-wave interactions in nonlinear optics: generation and interaction of spatiotemporal structures,” J. Opt. Soc. Am. B 9, 78–90 (1992). [CrossRef]
  9. B. Thüring, R. Neubecker, and T. Tschudi, “Transverse pattern formation in liquid crystal light valve feedback system,” Opt. Commun. 102, 111–115 (1993). [CrossRef]
  10. R. Neubecker, G.-L. Oppo, B. Thering, and T. Tschudi, “Pattern formation in a liquid-crystal light valve with feedback, including polarization, saturation, and internal threshold effects,” Phys. Rev. A 52, 791–808 (1994). [CrossRef]
  11. M. A. Vorontsov, J. C. Riklin, and G. W. Carhart, “Optical simulation of phase-distorted imaging systems: nonlinear and adaptive optics approach,” Opt. Eng. (Bellingham) 34, 3229–3238 (1995). [CrossRef]
  12. A. V. Mamaev and M. Saffman, “Selection of unstable patterns and control of optical turbulence by Fourier plane filtering,” Phys. Rev. Lett. 80, 3499–3502 (1998). [CrossRef]
  13. S. J. Jensen, M. Schwab, and C. Denz, “Manipulation, stabilization, and control of pattern formation using Fourier space filtering,” Phys. Rev. Lett. 81, 1614–1617 (1998). [CrossRef]
  14. G. K. Harkness, G.-L. Oppo, R. Martin, A. J. Scroggie, and W. J. Firth, “Elimination of spatiotemporal disorder by Fourier space techniques,” Phys. Rev. A 58, 2577–2585 (1998). [CrossRef]
  15. A. Schreiber, B. Thüring, M. Kreuzer, and T. Tshudi, “Experimental investigation of solitary structures in a nonlinear optical feedback system,” Opt. Commun. 136, 415–418 (1997). [CrossRef]
  16. W. J. Firth and A. J. Scroggie, “Optical bullet holes: robust controllable localized states of a nonlinear cavity,” Phys. Rev. Lett. 76, 1623–1626 (1996). [CrossRef] [PubMed]
  17. M. A. Vorontsov and W. B. Miller, eds., Self-Organization in Optical Systems and Applications in Information Technology (Springer-Verlag, Berlin, 1995), Chap. 2.
  18. P. L. Ramazza, S. Boccaletti, A. Giaquinta, E. Pampaloni, S. Soria, and F. T. Arecchi, “Optical pattern selection by a lateral wave-front shift,” Phys. Rev. A 54, 3472–3475 (1996). [CrossRef] [PubMed]
  19. Y. Hayasaki, H. Yamamoto, and N. Nishida, “Optical dependence of spatial frequency of formed patterns on focusing deviation in nonlinear optical ring resonator,” Opt. Commun. 151, 263–267 (1998). [CrossRef]
  20. N. Mukohzaka, N. Yoshida, H. Toyoda, Y. Kobayashi, and T. Hara, “Diffraction efficiency analysis of a parallel-aligned nematic-liquid-crystal spatial light modulator,” Appl. Opt. 33, 2804–2811 (1994). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited