OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 17, Iss. 7 — Jul. 1, 2000
  • pp: 1216–1222

Model-independent maximum-entropy method for the analysis of sum-frequency vibrational spectroscopy

Pao-Keng Yang and Jung Y. Huang  »View Author Affiliations


JOSA B, Vol. 17, Issue 7, pp. 1216-1222 (2000)
http://dx.doi.org/10.1364/JOSAB.17.001216


View Full Text Article

Acrobat PDF (212 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We have developed and applied a maximum-entropy phase-retrieval procedure to analyze sum-frequency vibrational spectra from a CCl<sub>4</sub>/octadecyl tricholosilane/silica interface and a hydrogen-terminated diamond C(111) surface. Some <i>a priori</i> knowledge of a nonlinear optical spectrum was employed for determining the phase of nonlinear optical susceptibility, and therefore the requirement for experimental phase measurement can be avoided. The results agree well with those from the Lorentzian line-shape model and justify the applicability of the <i>a priori</i> constraints employed in our phase-retrieval procedure.

© 2000 Optical Society of America

OCIS Codes
(190.1900) Nonlinear optics : Diagnostic applications of nonlinear optics
(190.4350) Nonlinear optics : Nonlinear optics at surfaces
(300.6490) Spectroscopy : Spectroscopy, surface

Citation
Pao-Keng Yang and Jung Y. Huang, "Model-independent maximum-entropy method for the analysis of sum-frequency vibrational spectroscopy," J. Opt. Soc. Am. B 17, 1216-1222 (2000)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-17-7-1216


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. E. M. Vartiainen, “Phase retrieval approach for coherent anti-Stokes Raman scattering spectrum analysis,” J. Opt. Soc. Am. B 9, 1209–1214 (1992).
  2. E. M. Vartiainen and K.-E. Peiponen, “Meromorphic degenerate nonlinear susceptibility: phase retrieval from the amplitude spectrum,” Phys. Rev. B 50, 1941–1944 (1994).
  3. E. M. Vartiainen, K.-E. Peiponen, and H. Kishida, “Phase retrieval in nonlinear optical spectroscopy by the maximum-entropy method: an application to the |χ(3)| spectra of polysilane, T. Koda,” J. Opt. Soc. Am. B 13, 2106–2114 (1996).
  4. E. M. Vartiainen, K.-E. Peiponen, and T. Asakura, “Phase retrieval in optical spectroscopy: resolving optical constants from power spectra,” Appl. Spectrosc. 50, 1283–1289 (1996).
  5. K.-E. Peiponen, E. M. Vartiainen, and T. Asakura, “Dispersion theory and phase retrieval of meromorphic total susceptibility,” J. Phys.: Condens. Matter 9, 8937–8943 (1997).
  6. K.-E. Peiponen, E. M. Vartiainen, and T. Asakura, “Dispersion theory of effective meromorphic nonlinear susceptibility of nanocomposites,” J. Phys.: Condens. Matter 10, 2483–2488 (1998).
  7. F. L. Ridener and R. H. Good, “Dispersion relations for nonlinear systems of arbitrary degree,” Phys. Rev. B 11, 2768–2770 (1975).
  8. H. Kishida, T. Hasegawa, Y. Iwasa, T. Koda, and Y. Tokura, “Dispersion relation in the third-order electric susceptibility for polysilane films,” Phys. Rev. Lett. 70, 3724–3727 (1993).
  9. P.-K. Yang and J. Y. Huang, “Phase-retrieval problems in infrared-visible sum-frequency generation spectroscopy by the maximum-entropy method,” J. Opt. Soc. Am. B 14, 2443–2448 (1997).
  10. R. Superfine, J. Y. Huang, and Y. R. Shen, “Phase measurement for surface infrared-visible sum-frequency generation,” Opt. Lett. 15, 1276–1278 (1990).
  11. R. Superfine, J. Y. Huang, and Y. R. Shen, “Experimental determination of the sign of molecular dipole derivatives: an infrared-visible sum frequency generation absolute measurement study,” Chem. Phys. Lett. 172, 303–306 (1990).
  12. J. Y. Huang and Y. R. Shen, “Sum-frequency as a surface probe,” in Laser Spectroscopy and Photochemistry on Metal Surfaces, H. L. Dai and W. Ho, eds. (World Scientific, Singapore, 1995), Vol. 1, pp. 5–53.
  13. S. H. Lin and A. A. Villaeys, “Theoretical description of steady-state sum-frequency generation in molecular adsorbates,” Phys. Rev. A 50, 5134–5144 (1994).
  14. P. Guyot-Sionnest, R. Superfine, J. H. Hunt, and Y. R. Shen, “Vibrational spectroscopy of a silane monolayer at air/solid and liquid/solid interfaces using sum-frequency generation,” Chem. Phys. Lett. 144, 1–5 (1998).
  15. R. P. Chin, J. Y. Huang, Y. R. Shen, T. J. Chuang, H. Seki, and M. Buck, “Vibrational spectra of hydrogen on diamond C(111)-(1×1),” Phys. Rev. B 45, 1522–1524 (1992); R. P. Chin, J. Y. Huang, Y. R. Shen, T. J. Chuang, and H. Seki, “Interaction of atomic hydrogen with the diamond C(111) surface studied by infrared-visible sum-frequency generation spectroscopy,” Phys. Rev. B 52, 5985–5995 (1995).
  16. T. H. Ong, P. B. Davies, and A. M. Creeth, “Polymer-surfactant aggregates at a hydrophobic surface studied using sum-frequency vibrational spectroscopy,” Langmuir 11, 2931–2937 (1995).
  17. P.-K. Yang and J. Y. Huang, “Linewidth-deduction method for nonlinear optical spectroscopy with transform-limited light pulses,” J. Opt. Soc. Am. B 15, 1130–1134 (1998).
  18. Van den Bos, “Alternative interpretation of maximum entropy spectral analysis,” IEEE Trans. Inf. Theory IT-17, 493–494 (1971).
  19. T. J. Ulrych and M. Ooe, “Autoregressive and mixed autoregressive-moving average models and spectra,” in Nonlinear Methods of Spectral Analysis, S. Haykin, ed. (Springer-Verlag, Berlin, 1983), Chap. 3, pp. 73–125.
  20. J. Ihm, S. G. Louie, and M. L. Cohen, “Self-consistent pseudopotential calculations for Ge and diamond (111) surfaces,” Phys. Rev. B 17, 769–775 (1978).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited