OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 17, Iss. 8 — Aug. 1, 2000
  • pp: 1335–1342

Cavity-configuration-dependent nonlinear dynamics in Kerr-lens mode-locked lasers

Ming-Dar Wei and Wen-Feng Hsieh  »View Author Affiliations

JOSA B, Vol. 17, Issue 8, pp. 1335-1342 (2000)

View Full Text Article

Enhanced HTML    Acrobat PDF (217 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We determined theoretically that the nonlinear dynamics of a Gaussian beam is configuration dependent in a general cavity. This prediction was confirmed by numerical simulation in a Kerr-lens mode-locked cavity for which the self-focusing effect is considered the nonlinear source in both the spatial and the temporal domains. Period doubling, tripling, and quadrupling can occur in these configurations with the products of generalized cavity G parameters equal to 1/2, 1/4 (or 3/4), and (2±2)/4, respectively. The dynamic behavior of the cavity beam will become irregular if the nonlinear effect is further increased.

© 2000 Optical Society of America

OCIS Codes
(140.1540) Lasers and laser optics : Chaos
(140.3410) Lasers and laser optics : Laser resonators
(140.4050) Lasers and laser optics : Mode-locked lasers
(260.5950) Physical optics : Self-focusing

Ming-Dar Wei and Wen-Feng Hsieh, "Cavity-configuration-dependent nonlinear dynamics in Kerr-lens mode-locked lasers," J. Opt. Soc. Am. B 17, 1335-1342 (2000)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. E. Spence, P. N. Kean, and W. Sibbett, “60-fs pulse generation from a self-mode-locked Ti:sapphire laser,” Opt. Lett. 16, 42–44 (1991). [CrossRef] [PubMed]
  2. M. Piche, “Beam reshaping and self-mode-locking in nonlinear laser resonators,” Opt. Commun. 86, 156–160 (1991). [CrossRef]
  3. G. W. Pearson, C. Radzewicz, and J. S. Krasinski, “Analysis of self-focusing mode-locking lasers with additional highly nonlinear self-focusing elements,” Opt. Commun. 94, 221–226 (1992). [CrossRef]
  4. J. Herrmann, “Theory of Kerr-lens mode locking: role of self-focusing and radially varying gain,” J. Opt. Soc. Am. B 11, 498–512 (1994). [CrossRef]
  5. G. Cerullo, S. De Silvestri, V. Magni, and L. Pallaro, “Resonators for Kerr-lens mode-locked femtosecond Ti:sapphire lasers,” Opt. Lett. 19, 807–809 (1994). [CrossRef] [PubMed]
  6. K.-H. Lin and W.-F. Hsieh, “An analytical design of asymmetrical Kerr lens mode-locking laser cavities,” J. Opt. Soc. Am. B 11, 737–741 (1994). [CrossRef]
  7. J. L. A. Chilla and O. E. Martinez, “Spatial-temporal analysis of the self-mode-locked Ti:sapphire laser,” J. Opt. Soc. Am. B 10, 638–643 (1993). [CrossRef]
  8. K.-H. Lin and W.-F. Hsieh, “Analytical spatio-temporal design of Kerr lens mode-locked laser resonators,” J. Opt. Soc. Am. B 13, 1786–1793 (1996). [CrossRef]
  9. D. Cote and H. M. van Driel, “Period doubling of a femtosecond Ti:sapphire laser by total mode locking,” Opt. Lett. 23, 715–717 (1998). [CrossRef]
  10. S. R. Bolton, R. A. Jenks, C. N. Elkinton, and G. Sucha, “Pulse-resolved measurements of subharmonic oscillations in a Kerr-lens mode-locked Ti:sapphire laser,” J. Opt. Soc. Am. B 16, 339–344 (1999). [CrossRef]
  11. V. L. Kalashnikov, I. G. Poloyko, and V. P. Mikhailov, “Regular, quasi-periodic, and chaotic behavior in continuous-wave solid-state Kerr-lens mode-locked lasers,” J. Opt. Soc. Am. B 14, 2691–2695 (1997). [CrossRef]
  12. Q. Xing, L. Chai, W. Zhang, and C. Wang, “Regular, period-doubling, quasi-periodic, and chaotic behavior in a self-mode-locked Ti:sapphire laser,” Opt. Commun. 162, 71–74 (1999). [CrossRef]
  13. M.-D. Wei, W.-F. Hsieh, and C. C. Sung, “Dynamics of an optical resonator determined by its iterative map of beam parameters,” Opt. Commun. 146, 201–207 (1998). [CrossRef]
  14. J. M. Greene, “A method for determining a stochastic transition,” J. Math. Phys. 20, 1183–1201 (1979). [CrossRef]
  15. A. E. Seigman, Lasers (University Science, Mill Valley, Calif., 1986), Chaps. 20 and 21.
  16. H. Kogelnik, “Imaging of optical modes—resonators with internal lenses,” Bell Syst. Tech. J. 44, 455–494 (1965); H. Kogelnik and T. Li, “Laser beams and resonators,” Appl. Opt. 5, 1550–1556 (1966). [CrossRef] [PubMed]
  17. H. A. Haus, J. G. Fujimoto, and E. P. Ippen, “Analytic theory of additive pulse and Kerr lens mode-locking,” IEEE J. Quantum Electron. 28, 2086–2096 (1992). [CrossRef]
  18. M.-D. Wei, W.-F. Hsieh, and C. C. Sung, “The preferable resonators for Kerr-lens mode-locking determined by stability factors of their iterative maps,” Opt. Commun. 155, 406–412 (1998). [CrossRef]
  19. L. M. Sanchez and A. A. Hnilo, “Optical cavities as iterative maps in the complex plane,” Opt. Commun. 166, 229–238 (1999). [CrossRef]
  20. K.-H. Lin, Y. Lai, and W.-F. Hsieh, “Simple analytic method of cavity design for astigmatism compensated Kerr lens mode-locked ring lasers and its application,” J. Opt. Soc. Am. B 12, 468–475 (1995). [CrossRef]
  21. M. Mechendale, T. R. Nelson, F. G. Omenetto, and W. A. Schroeder, “Thermal effects in laser pumped Kerr-lens modelocked Ti:sapphire lasers,” Opt. Commun. 136, 150–159 (1997). [CrossRef]
  22. B. E. Lemoff and C. P. J. Barty, “Generation of high-peak-power 20 fs pulses from a regeneratively initiated, self-mode-locked Ti:sapphire laser,” Opt. Lett. 17, 1367–1369 (1992). [CrossRef]
  23. R. S. MacKay, Renormalisation in Area-Preserving Maps (World Scientific, Singapore, 1993), Chap. 1.
  24. A. J. Lichtenberg and M. A. Lieberman, Regular and Chaotic Dynamics (Springer-Verlag, New York, 1992), Chap. 3.
  25. J.-M. Shieh, F. Ganikhanov, K.-H. Lin, W.-F. Hsieh, and C.-L. Pan, “Completely self-starting picosecond and femtosecond Kerr-lens mode-locked Ti:sapphire laser,” J. Opt. Soc. Am. B 12, 945–949 (1995). [CrossRef]
  26. F. Salin and J. Squier, “Gain guiding in solid-state lasers,” Opt. Lett. 17, 1352–1354 (1992). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited