OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 17, Iss. 8 — Aug. 1, 2000
  • pp: 1366–1375

Transverse effects in ultrabroadband multifrequency Raman generation

K. S. Syed, G. S. McDonald, and G. H. C. New  »View Author Affiliations


JOSA B, Vol. 17, Issue 8, pp. 1366-1375 (2000)
http://dx.doi.org/10.1364/JOSAB.17.001366


View Full Text Article

Enhanced HTML    Acrobat PDF (335 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The theory of ultrabroadband multifrequency Raman generation is extended, for the first time, to allow for beam-propagation effects in one and two transverse dimensions. We show that a complex transverse structure develops even when diffraction is neglected. In the general case, we examine how the ultrabroadband multifrequency Raman generation process is affected by the intensity, phase quality, and width of the input beams, and by the length of the Raman medium. The evolution of power spectra, intensity profiles, and global characteristics of the multifrequency beams are investigated and explained. In the two-dimensional transverse case, bandwidths comparable to the optical carrier frequency, spanning the whole visible spectrum and beyond, are still achievable.

© 2000 Optical Society of America

OCIS Codes
(190.2620) Nonlinear optics : Harmonic generation and mixing
(190.4380) Nonlinear optics : Nonlinear optics, four-wave mixing
(190.4410) Nonlinear optics : Nonlinear optics, parametric processes
(190.4420) Nonlinear optics : Nonlinear optics, transverse effects in
(290.5910) Scattering : Scattering, stimulated Raman

Citation
K. S. Syed, G. S. McDonald, and G. H. C. New, "Transverse effects in ultrabroadband multifrequency Raman generation," J. Opt. Soc. Am. B 17, 1366-1375 (2000)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-17-8-1366


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. L. L. Losev and A. P. Lutsenko, “Parametric Raman laser with a discrete output spectrum equal in width to the pump frequency,” Quantum Electron. 23, 919–926 (1993). [CrossRef]
  2. G. S. McDonald, G. H. C. New, L. L. Losev, A. P. Lutsenko, and M. J. Shaw, “Ultrabroad bandwidth multi-frequency Raman generation,” Opt. Lett. 19, 1400–1402 (1994). [CrossRef] [PubMed]
  3. G. S. McDonald, G. H. C. New, L. L. Losev, A. P. Lutsenko, and M. J. Shaw, “On the generation of ultrabroad bandwidth light for inertial confinement fusion,” Inst. Phys. Conf. Ser. 140, 85–88 (1995).
  4. G. S. McDonald, “Ultrabroad bandwidth multi-frequency Raman soliton pulse trains,” Opt. Lett. 20, 822–824 (1995). [CrossRef] [PubMed]
  5. G. S. McDonald, G. H. C. New, L. L. Losev, and A. P. Lutsenko, “On the generation of ultra-broad bandwidth light in air at atmospheric pressure,” J. Phys. B 30, L719–L725 (1997). [CrossRef]
  6. G. S. McDonald, Yuk-Ming Chan, G. H. C. New, L. L. Losev, and A. P. Lutsenko, “Competing nonlinear effects in multi-frequency Raman generation,” J. Mod. Opt. 45, 1099–1110 (1998). [CrossRef]
  7. T. Imasaka, S. Yamanishi, S. Kawasaki, and N. Ishibashi, “Multi-frequency laser emission generated by two-color stimulated Raman effect using a single-frequency laser beam and a dye–Raman composite resonator,” Appl. Opt. 32, 6633–6637 (1993). [CrossRef] [PubMed]
  8. Y. Irie and T. Imasaka, “Generation of vibrational and rotational emissions by four-wave Raman mixing using an ultraviolet femtosecond pump beam,” Opt. Lett. 20, 2072–2074 (1995). [CrossRef] [PubMed]
  9. H. Kawano, C. H. Lin, and T. Imasaka, “Generation of high-order rotational lines by four-wave Raman mixing using a high-power picosecond Ti:sapphire laser,” Appl. Phys. B 63, 121–124 (1996). [CrossRef]
  10. C. H. Lin, T. Ohnishi, and T. Imasaka, “Vibrational stimulated Raman emission from dibromomethane as seed beam for four-wave rotational Raman mixing in hydrogen,” Jpn. J. Appl. Phys. 36, L412–L414 (1997). [CrossRef]
  11. H. Kawano, Y. Ishidzu, and T. Imasaka, “Generation of more than 40 rotational lines by picosecond and femtosecond Ti:sapphire laser for Fourier synthesis,” Appl. Phys. B 65, 1–4 (1997). [CrossRef]
  12. H. Kawano, Y. Hirakawa, and T. Imasaka, “Generation of high-order rotational lines in hydrogen by four-wave Raman mixing in the femtosecond regime,” IEEE J. Quantum Electron. 34, 260–268 (1998). [CrossRef]
  13. T. Mori, Y. Hirakawa, and T. Imasaka, “Role of supercontinuum in the generation of rotational Raman emission based on stimulated Raman gain and four-wave Raman mixing,” Opt. Commun. 148, 110–112 (1998). [CrossRef]
  14. A. P. Hickman, J. A. Paisner, and W. K. Bischel, “Theory of multiwave propagation and frequency conversion in a Raman medium,” Phys. Rev. A 33, 1788–1797 (1986). [CrossRef] [PubMed]
  15. A. P. Hickman and W. K. Bischel, “Theory of Stokes and anti-Stokes generation by Raman frequency conversion in the transient limit,” Phys. Rev. A 37, 2516–2523 (1988). [CrossRef] [PubMed]
  16. A. Flusberg, S. Fulghum, H. Lotem, M. Rokni, and M. Tekula, “Multiseed stimulated rotational Raman scattering for wave-front control,” J. Opt. Soc. Am. B 8, 1851–1875 (1991). [CrossRef]
  17. G. P. Agrawal, Nonlinear Fiber Optics (Academic, London, 1989).
  18. Y. R. Shen and N. Bloembergen, “Theory of stimulated Brillouin and Raman scattering,” Phys. Rev. 137, A1787–A1805 (1965). [CrossRef]
  19. C. Reiser, T. D. Raymond, R. B. Michie, and A. P. Hickman, “Efficient anti-Stokes Raman conversion in collimated beams,” J. Opt. Soc. Am. B 6, 1859–1869 (1989). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited