OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 17, Iss. 8 — Aug. 1, 2000
  • pp: 1390–1397

Compression and broadening of phase-conjugate pulses in photorefractive self-pumped phase conjugators

Changxi Yang, Min Xiao, and Malgosia Kaczmarek  »View Author Affiliations


JOSA B, Vol. 17, Issue 8, pp. 1390-1397 (2000)
http://dx.doi.org/10.1364/JOSAB.17.001390


View Full Text Article

Acrobat PDF (255 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Pulse propagation and shaping are investigated in photorefractive self-pumped phase conjugators in both transmission- and reflection-grating regimes. The dispersion properties of self-pumped phase conjugators are analyzed by taking into account both the grating dispersion and the angular dispersion. The complex transfer functions are obtained by treating the crystal as a linear dispersive medium. We show that the pulse width as a result of the self-pumped phase conjugation is much wider in the reflection regime than in the transmission regime. The experimental results are consistent with the results calculated for the transmission-grating regime, indicating that this type grating is the dominant mechanism in the case of a femtosecond self-pumped phase conjugator.

© 2000 Optical Society of America

OCIS Codes
(190.5040) Nonlinear optics : Phase conjugation
(190.5330) Nonlinear optics : Photorefractive optics
(190.5530) Nonlinear optics : Pulse propagation and temporal solitons
(320.5520) Ultrafast optics : Pulse compression

Citation
Changxi Yang, Min Xiao, and Malgosia Kaczmarek, "Compression and broadening of phase-conjugate pulses in photorefractive self-pumped phase conjugators," J. Opt. Soc. Am. B 17, 1390-1397 (2000)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-17-8-1390


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. See, for example, G. P. Agrawal, Nonlinear Fiber Optics (Academic, San Diego, Calif., 1995), and references therein.
  2. See, for example, J. C. Diels and W. Rudolph, Ultrashort Laser Pulse Phenomena: Fundamentals, Techniques, and Applications on Femtosecond Time Scale (Academic, San Diego, Calif., 1995).
  3. G. P. Agrawal, “Far-field diffraction of pulsed optical beams in dispersive media,” Opt. Commun. 167, 15–22 (1999).
  4. H. A. Haus and W. S. Wong, “Solitons in optical communications,” Rev. Mod. Phys. 68, 423–444 (1996).
  5. C. M. de Sterke, N. G. R. Broderick, B. J. Eggleton, and M. J. Steel, “Nonlinear optics in fiber gratings,” Opt. Fiber Technol. Mater. Devices Syst. 2, 253–268 (1996).
  6. T. G. Brown and B. J. Eggleton, “Focus issue: Bragg solitons and nonlinear optics of periodic structures,” Opt. Express 3, 384–476 (1998).
  7. N. G. Broderick, D. Taverner, D. J. Richardson, M. Ibsen, and R. I. Laming, “Optical pulse compression in fiber Bragg gratings,” Phys. Rev. Lett. 79, 4566–4569 (1997).
  8. F. Ouellete, “Dispersion cancellation using linearly chirped Bragg grating filters in optical waveguides,” Opt. Lett. 12, 847–849 (1987).
  9. F. Ouellette, “Limits of chirped pulse compression with an unchirped Bragg grating filter,” Appl. Opt. 29, 4826–4829 (1990).
  10. B. J. Eggleton, C. M. de Sterke, and R. E. Slusher, “Nonlinear pulse propagation in Bragg gratings,” J. Opt. Soc. Am. B 14, 2980–2993 (1997).
  11. G. Lenz, B. J. Eggleton, and L. Litchinitser, “Pulse compression using fiber gratings as highly dispersive nonlinear elements,” J. Opt. Soc. Am. B 15, 715–721 (1998).
  12. H. G. Winful, “Pulse compression in optical fiber filters,” Appl. Phys. Lett. 46, 527–529 (1985).
  13. P. St. J. Russell, “Bloch wave analysis of dispersion and pulse propagation in pure distributed feedback structures,” J. Mod. Opt. 38, 1599–1619 (1991).
  14. B. J. Eggleton, R. E. Slusher, C. M. de Sterke, P. A. Krug, and J. E. Sipe, “Bragg grating solitons,” Phys. Rev. Lett. 76, 1627–1630 (1996).
  15. B. J. Eggleton, G. Lenz, R. E. Slusher, and N. M. Litchinitser, “Compression of optical pulses spectrally broadened by self-phase modulation with a fiber Bragg grating in transmission,” Appl. Opt. 37, 7055–7061 (1998).
  16. A. Pecchia, M. Laurito, P. Apai, and M. B. Danailov, “Studies of two-wave mixing of very broad-spectrum laser light in BaTiO3,” J. Opt. Soc. Am. B 16, 917–923 (1999).
  17. L. H. Aciolo, M. Ulman, E. P. Ippen, J. G. Fujimoto, H. Kong, B. S. Chen, and M. Cronin-Golomb, “Femtosecond temporal encoding in barium titanate,” Opt. Lett. 16, 1984–1986 (1991).
  18. H. F. Yau, P. J. Wang, E. Y. Pan, and J. Chen, “Self-pumped phase conjugation with femtosecond pulses by use of BaTiO3,” Opt. Lett. 21, 1168–1170 (1996).
  19. H. F. Yau, P. J. Wang, E. Y. Pan, J. Chen, and J. Y. Chang, “Self-pumped phase conjugation with picosecond and femtosecond pulses using BaTiO3,” Opt. Commun. 135, 331–336 (1997).
  20. C. Yang, K. Minoshima, K. Seta, H. Matsumoto, and Y. Zhu, “Generation of self-pumped phase conjugation from the −c-face of BaTiO3 with femtosecond pulses,” Appl. Opt. 38, 1704–1708 (1999).
  21. C. Yang, K. Minoshima, K. Seta, and H. Matsumoto, “Characterization of femtosecond self-pumped phase conjugation in BaTiO3,” Appl. Phys. Lett. 74, 2062–2064 (1999).
  22. C. Yang, “Propagation and self-pumped phase conjugation of femtosecond laser pulses in BaTiO3,” J. Opt. Soc. Am. B 16, 871–877 (1999).
  23. M. B. Danailov, K. Diomande, P. Apai, and R. Szipocs, “Phase conjugation of broadband laser pulses in BaTiO3,” J. Mod. Opt. 45, 5–9 (1998).
  24. A. Yariv, D. Fekete, and D. M. Pepper, “Compensation for channel dispersion by nonlinear optical phase conjugation,” Opt. Lett. 4, 52–54 (1979).
  25. S. X. Dou, M. Chi, H. Song, X. Zhang, Y. Zhu, and P. Ye, “Effect of reflection and 2K gratings on self-pumped phase-conjugate mirrors: theoretical and experimental studies,” J. Opt. Soc. Am. B 16, 428–434 (1999).
  26. J. Feinberg, “Self-pumped, continuous-wave phase conjugation using internal reflection,” Opt. Lett. 7, 486–488 (1982).
  27. N. V. Kukhtarev, T. I. Semenets, K. H. Ringhofer, and G. Tomberger, “Phase conjugation by reflection grating in electro-optic crystals,” Appl. Phys. B 41, 259–263 (1986).
  28. K. Nakagawa, M. Zgonik, and P. Gunter, “Reflection gratings in self-pumped phase-conjugate mirrors,” J. Opt. Soc. Am. B 14, 839–845 (1997).
  29. S. H. Lin, Y. W. Lian, P. Yeh, K. Hsu, and Y. Zhu, “2k-grating-assisted self-pumped phase conjugation: theoretical and experimental studies,” J. Opt. Soc. Am. B 13, 1772–1779 (1996).
  30. P. Yeh, Introduction to Photorefractive Nonlinear Optics (Wiley, New York, 1993), Chap. 2.
  31. C. Yang, “Dispersion compensation for a femtosecond self-pumped phase conjugator,” Opt. Lett. 24, 31–33 (1999).
  32. K. Buse, S. Riehemann, S. Loheide, H. Hesse, F. Mersch, and E. Kratzig, “Refractive-indexes of single domain BaTiO3 for different wavelengths and temperatures,” Phys. Status Solidi A 135, K87–K89 (1993).
  33. Y. Ding, D. D. Nolte, M. R. Melloch, and A. M. Weiner, “Time-domain image processing using dynamic holography,” IEEE J. Sel. Top. Quantum Electron. 4, 332–341 (1998).
  34. K. Oba, P. C. Sun, and Y. Fainman, “Nonvolatile photorefractive spectral holography,” Opt. Lett. 23, 915–917 (1998).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited