OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 17, Iss. 8 — Aug. 1, 2000
  • pp: 1405–1411

Generation of continuous-wave terahertz radiation by use of quantum interference

E. A. Korsunsky and D. V. Kosachiov  »View Author Affiliations

JOSA B, Vol. 17, Issue 8, pp. 1405-1411 (2000)

View Full Text Article

Acrobat PDF (171 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose a scheme for the generation of continuous-wave terahertz (THz) radiation. The scheme requires a medium in which three discrete states in a Λ configuration can be selected, with the THz frequency transition being between the two lower metastable states. The propagation of three-frequency continuous-wave electromagnetic (EM) radiation through a Λ medium is considered. Under resonant excitation, the medium absorption can be strongly reduced owing to quantum interference of transitions, whereas the nonlinear susceptibility is enhanced. This leads to efficient energy transfer among the EM waves, providing the possibility of THz generation. We demonstrate that the photon conversion efficiency is approaching unity in this technique.

© 2000 Optical Society of America

OCIS Codes
(020.1670) Atomic and molecular physics : Coherent optical effects
(190.2620) Nonlinear optics : Harmonic generation and mixing
(190.4410) Nonlinear optics : Nonlinear optics, parametric processes
(270.1670) Quantum optics : Coherent optical effects

E. A. Korsunsky and D. V. Kosachiov, "Generation of continuous-wave terahertz radiation by use of quantum interference," J. Opt. Soc. Am. B 17, 1405-1411 (2000)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. Special issue on terahertz electromagnetic pulse generation, physics, and applications, D. R. Dykaar and S. L. Chuang, eds., J. Opt. Soc. Am. B 11(12) (1994).
  2. F. Strumia, “A proposal for a new absolute frequency standard, using a Mg or Ca atomic beam,” Metrologia 8, 85–90 (1972).
  3. A. Godone and C. Novero, “The magnesium frequency standard,” Metrologia 30, 163–181 (1993).
  4. S. E. Harris, “Electromagnetically induced transparency,” Phys. Today 50, 36–42 (1997).
  5. S. E. Harris, J. E. Feld, and A. Imamoglu, “Nonlinear optical processes using electromagnetically induced transparency,” Phys. Rev. Lett. 64, 1107–1110 (1990).
  6. G. Z. Zhang, D. W. Tokaryk, B. P. Stoicheff, and K. Hakuta, “Nonlinear generation of extreme-ultraviolet radiation in atomic hydrogen using electromagnetically induced transparency,” Phys. Rev. A 56, 813–819 (1997); D. W. Tokaryk, G. Z. Zhang, and B. P. Stoicheff, “Nonlinear optical generation in a hydrogen discharge,” Phys. Rev. A 59, 3116–3119 (1999).
  7. S. Babin, U. Hinze, E. Tiemann, and B. Wellegehausen, “Continuous resonant four-wave mixing in double-Λ level configurations of Na2,” Opt. Lett. 21, 1186–1188 (1996); A. Apolonskii, S. Baluschev, U. Hinze, E. Tiemann, and B. Wellegehausen, “Continuous frequency up-conversion in double-Λ scheme of Na2,” Appl. Phys. B 64, 435–442 (1997).
  8. B. S. Ham, M. S. Shahriar, and P. R. Hemmer, “Enhanced nondegenerate four-wave mixing owing to electromagnetically induced transparency in a spectral hole-burning crystal,” Opt. Lett. 22, 1138–1140 (1997); “Enhancement of four-wave mixing and line narrowing by use of quantum coherence in an optically dense double-Λ solid,” Opt. Lett. 24, 86–88 (1999).
  9. M. Jain, H. Xia, G. Y. Yin, A. J. Merriam, and S. E. Harris, “Efficient nonlinear frequency conversion with maximal atomic coherence,” Phys. Rev. Lett. 77, 4326–4329 (1996).
  10. A. J. Merriam, S. J. Sharpe, H. Xia, D. Manuszak, G. Y. Yin, and S. E. Harris, “Efficient gas-phase generation of coherent vacuum ultraviolet radiation,” Opt. Lett. 24, 625–627 (1999).
  11. M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge U. Press, Cambridge, UK, 1997).
  12. D. V. Kosachiov, “Resonant Λ medium as a converter of the laser radiation frequency,” Kvant. Elektron. (Moscow) 22, 1123–1128 (1995) [Quantum Electron. 25, 1089–1094 (1995)].
  13. E. A. Korsunsky and D. V. Kosachiov, “Phase-dependent nonlinear optics with double-Λ atoms,” Phys. Rev. A 60, 4996–5009 (1999).
  14. E. Arimondo, “Coherent population trapping in laser spectroscopy,” in Progress in Optics, E. Wolf, ed. (Elsevier, Amsterdam, 1996), Vol. 35, pp. 257–354.
  15. A. Godone, F. Levy, and J. Vanier, “Coherent microwave emission in cesium under coherent population trapping,” Phys. Rev. A 59, R12–R15 (1999); J. Vanier, A. Godone, and F. Levy, “Coherent population trapping in cesium: dark lines and coherent microwave emission,” Phys. Rev. A 58, 2345–2358 (1998).
  16. R. W. Boyd, Nonlinear Optics (Academic, San Diego, Calif., 1992).
  17. D. V. Kosachiov, B. G. Matisov, and Yu. V. Rozhdestvensky, “Coherent phenomena in multilevel systems with closed interaction contour,” J. Phys. B 25, 2473–2488 (1992).
  18. D. V. Kosachiov and E. A. Korsunsky, “Efficient microwave-induced optical frequency conversion,” Eur. Phys. J. D. (to be published).
  19. S. J. Buckle, S. M. Barnett, P. L. Knight, M. A. Lauder, and D. T. Pegg, “Atomic interferometers: phase-dependence in multilevel atomic transitions,” Opt. Acta 33, 1129–1140 (1986).
  20. J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127, 1918–1939 (1962).
  21. M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions (Dover, New York, 1965).
  22. S. Brandt, A. Nagel, R. Wynands, and D. Meschede, “Buffer-gas-induced linewidth reduction of coherent dark resonances to below 50 Hz,” Phys. Rev. A 56, R1063–R1066 (1997).
  23. J. H. Xu and G. Alzetta, “High buffer gas pressure perturbation of coherent population trapping in sodium vapors,” Phys. Lett. A 248, 80–85 (1998).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited