OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 17, Iss. 8 — Aug. 1, 2000
  • pp: 1412–1419

Photorefractive charge compensation in α-phase proton-exchanged LiNbO3 waveguides

A. Méndez, A. García-Cabañes, M. Carrascosa, and J. M. Cabrera  »View Author Affiliations

JOSA B, Vol. 17, Issue 8, pp. 1412-1419 (2000)

View Full Text Article

Acrobat PDF (252 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Photorefractive recording and light and dark erasures have been measured in unannealed α-phase proton-exchanged LiNbO3 waveguides. The saturation index change, Δns≅9×10−6, is independent of the light intensity within the studied range, 0.3–50 W/cm2. The time dependencies are well represented by the sum of two exponential components. After complete optical erasure, diffraction efficiency η increases in the dark (i.e., dark developing) up to ∼17% of the saturation value ηs≅0.12 and then decays to zero in ∼4 h. All experimental results are reasonably well simulated by a model in which the Fe2+/Fe3+ light-induced charge distribution is compensated for by a light-insensitive species (ionic charges or holes) that is mobile at room temperature.

© 2000 Optical Society of America

OCIS Codes
(130.3130) Integrated optics : Integrated optics materials
(130.3730) Integrated optics : Lithium niobate
(190.4400) Nonlinear optics : Nonlinear optics, materials
(190.5330) Nonlinear optics : Photorefractive optics

A. Méndez, A. García-Cabañes, M. Carrascosa, and J. M. Cabrera, "Photorefractive charge compensation in α-phase proton-exchanged LiNbO3 waveguides," J. Opt. Soc. Am. B 17, 1412-1419 (2000)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. V. E. Wood, P. J. Cressman, R. L. Holman, and C. M. Verber, “Photorefractive effects in waveguides,” in Photorefractive Materials and Their Applications II, P. Günter and J. P. Huignard, eds. (Springer-Verlag, Berlin, 1989).
  2. D. Kip, “Photorefractive waveguides in oxide crystals: fabrication, properties and applications,” Appl. Phys. B 67, 131–150 (1998).
  3. E. Glavas, J. M. Cabrera, and P. D. Townsend, “A comparison of optical damage in different types of LiNbO3 waveguides,” J. Phys. D 22, 611–616 (1989).
  4. T. Fujiwara, X. Cao, R. Srivastava, and R. W. Ramaswamy, “Photorefractive effect in annealed proton-exchanged LiNbO3 waveguides,” Appl. Phys. Lett. 61, 743–745 (1992).
  5. Y. Kondo and Y. Fuji, “Photorefractive effect in proton-exchanged waveguiding layers formed on lithium niobate and lithium tantalate crystals,” Jpn. J. Appl. Phys. 34, L309–L311 (1995).
  6. T. Fujiwara, R. Srivastava, X. Cao, and R. W. Ramaswamy, “Comparison of photorefractive index change in proton-exchanged and Ti-diffused LiNbO3 waveguides,” Opt. Lett. 18, 346–348 (1993).
  7. A. Alcazar, J. Rams, J. M. Cabrera, and F. Agulló-López, “Light-induced damage mechanisms in α-phase proton-exchanged LiNbO3 waveguides,” J. Appl. Phys. 82, 4752–4757 (1997).
  8. Yu. N. Korkishko and V. A. Fedorov, “Structural phase diagram of HxLi1−xNbO3 waveguides: correlation between optical and structural properties,” IEEE J. Sel. Top. Quantum Electron. 2, 187–196 (1996).
  9. S. M. Kostritskii, D. Kip, and E. Krätzig, “Improvement of photorefractive properties of proton-exchanged LiTaO3 waveguides,” Appl. Phys. B 65, 517–522 (1997).
  10. J. Rams and J. M. Cabrera, “Preparation of β-phase proton exchanged LiNbO3 waveguides with undegraded nonlinear optical coefficients,” J. Opt. Soc. Am. B 16, 401–406 (1999).
  11. J. Rams and J. M. Cabrera, “Nonlinear optical efficient LiNbO3 waveguides proton-exchanged in benzoic acid vapor: effect of the vapor pressure,” J. Appl. Phys. 85, 1322–1328 (1999).
  12. A. Méndez, A. Tejeda, J. Rams, M. Carrascosa, A. Garcia-Cabañes, and J. M. Cabrera, “Photorefractive behaviour of α-phase proton-exchanged LiNbO3 waveguides,” in Advances in Photorefractive Materials, Effects, and Devices, P. E. Andersen, P. M. Johansen, H. C. Petersen, T. M. Petersen, and M. Saffman, eds., Vol. 27 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1999), pp. 127–131.
  13. F. Laurell, M. G. Roelofs, and H. Hsiung, “Loss of optical nonlinearity in proton-exchanged LiNbO3 waveguides,” Appl. Phys. Lett. 60, 301–303 (1992).
  14. V. A. Ganshin and Yu. N. Korkishko, “H:LiNbO3 waveguides: effects of annealing,” Opt. Commun. 86, 523–530 (1991).
  15. J. M. Cabrera, J. Olivares, M. Carrascosa, J. Rams, R. Müller, and E. Diéguez, “Hydrogen in LiNbO3,” Adv. Phys. 45, 349–392 (1996).
  16. X. Yue, E. Krätzig, and R. A. Rupp, “Photorefractive charge compensation during holographic recording in Bi4Ti3O12,” J. Opt. Soc. Am. B 15, 2383–2389 (1998).
  17. T. Nikolajsen, P. M. Johansen, X. Yue, D. Kip, and E. Krätzig, “Self-fixation of holograms in a piezoelectric La3Ga5SiO14:Pr3+ crystal,” in Conference on Lasers and Electro-Optics (CLEO/US)/Quantum Electronics and Laser Science Conference, 1999 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1999), paper CFB7.
  18. J. Hukriede, D. Kip, and E. Krätzig, “Thermal fixing of holographic gratings in planar LiNbO3:Ti:Fe waveguides,” Appl. Phys. B 66, 333–338 (1998).
  19. J. Hukriede, I. Nee, D. Kip, and E. Krätzig, “Thermally fixed reflection grating for infrared light in LiNbO3:Ti:Fe channel waveguides,” Opt. Lett. 23, 1405–1407 (1998).
  20. M. Carrascosa and F. Agulló-López, “Erasure of holographic gratings in photorefractive materials with two active species,” Appl. Opt. 27, 2851–2857 (1988).
  21. J. Baquedano, L. Contreras, E. Diéguez, and J. M. Cabrera, “Spectral dependence of photorefractive erasure in Bi12GeO20 and Bi12SiO20,” J. Appl. Phys. 66, 5146–5150 (1989).
  22. F. Jariego and F. Agulló-López, “Holographic writing and erasure in unipolar photorrefractive materials with multiple active centers: theoretical analysis,” Appl. Opt. 30, 4615–4621 (1991).
  23. G. Montemezzani, M. Zgonik, and P. Günter, “Photorefractive charge compensation at elevated temperatures and application to KNbO3,” J. Opt. Soc. Am. B 10, 171–185 (1993).
  24. R. Göring, Z. Yuan-Ling, and S. Steinberg, “Photoconductivity and photovoltaic behavior of LiNbO3 and LiNbO3 waveguides at high optical intensities,” Appl. Phys. A 55, 97–100 (1992).
  25. B. I. Sturman, M. Carrascosa, F. Agulló-López, and J. Limeres, “Theory of high temperature photorefractive phenomena in LiNbO3 crystals and applications to experiments,” Phys. Rev. B 57, 12792–12805 (1998).
  26. M. Carrascosa and F. Agulló-López, “Selective developing and screening of fixed photorefractive holograms,” Opt. Commun. 151, 257–262 (1998).
  27. J. Olivares, E. Diéguez, F. J. López, and J. M. Cabrera, “Fe ions in proton exchanged LiNbO3 waveguides,” Appl. Phys. Lett. 61, 624–626 (1992).
  28. M. Carrascosa and L. Arizmendi, “High temperature photorefractive effects in LiNbO3:Fe,” J. Appl. Phys. 73, 2709–2713 (1993).
  29. N. V. Kukhtarev, “Kinetics of hologram recording and erasure in electrooptic crystals,” Sov. Tech. Phys. Lett. 2, 438–440 (1976).
  30. M. Carrascosa and F. Agulló-López, “Theoretical model of the fixing and developing of holographic gratings in LiNbO3,” J. Opt. Soc. Am. B 7, 2317–2322 (1990).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited