OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 17, Iss. 8 — Aug. 1, 2000
  • pp: 1457–1463

Frozen wave generation of bandwidth-tunable two-cycle THz radiation

Jonathan F. Holzman, Fred E. Vermeulen, and Abdul Y. Elezzabi  »View Author Affiliations

JOSA B, Vol. 17, Issue 8, pp. 1457-1463 (2000)

View Full Text Article

Enhanced HTML    Acrobat PDF (220 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report on the application of a photoconductive frozen wave generator (FWG) for the generation of 0.36-THz radiation. Through the excitation of a bipolar photoconductive array, a two-cycle THz electrical transient is created. The THz electrical transient occurs on a time scale much shorter than the carrier lifetime in the semiconductor. Furthermore, variations in the uniformity of the optical excitation intensity across the photoconductive array introduce a controlled THz temporal chirp, thus providing for fine bandwidth tunability of the device. Modeling of the FWG is successful in describing both the time variation and the amplitude spectrum of the photogenerated THz radiation.

© 2000 Optical Society of America

OCIS Codes
(130.5990) Integrated optics : Semiconductors
(320.5390) Ultrafast optics : Picosecond phenomena
(320.7080) Ultrafast optics : Ultrafast devices
(320.7160) Ultrafast optics : Ultrafast technology

Jonathan F. Holzman, Fred E. Vermeulen, and Abdul Y. Elezzabi, "Frozen wave generation of bandwidth-tunable two-cycle THz radiation," J. Opt. Soc. Am. B 17, 1457-1463 (2000)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. W. McGowan and D. Grischkowsky, “Experimental time-domain study of THz signals from impulse excitation of a horizontal surface dipole,” Appl. Phys. Lett. 74, 1764–1766 (1999). [CrossRef]
  2. L. Thrane, R. H. Jacobsen, P. Uhd Jepsen, and S. R. Keiding, “THz reflection spectroscopy of liquid water,” Chem. Phys. Lett. 240, 330–333 (1995). [CrossRef]
  3. B. B. Hu, E. A. De Souza, W. H. Knox, J. E. Cunningham, M. C. Nuss, A. V. Kuznetsov, and S. L. Chuang, “Identifying the distinct phases of carrier transport in semiconductors with 10 fs resolution,” Phys. Rev. Lett. 74, 1689–1692 (1995). [CrossRef] [PubMed]
  4. N. Katzenellenbogen and D. Grischkowsky, “Electrical characterization to 4 THz of n- and p-type GaAs using THz time-domain spectroscopy,” Appl. Phys. Lett. 61, 840–842 (1992). [CrossRef]
  5. D. Grischkowsky, S. R. Keiding, M. van Exter, and Ch. Fatinger, “Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors,” J. Opt. Soc. Am. B 7, 2006–2015 (1990). [CrossRef]
  6. M. van Exter and D. Grischkowsky, “Optical and electronic properties of doped silicon from 0.1 to 2 THz,” Appl. Phys. Lett. 56, 1694–1696 (1990). [CrossRef]
  7. R. A. Cheville and D. Grischkowsky, “Time domain terahertz impulse ranging studies,” Appl. Phys. Lett. 67, 1960–1962 (1995). [CrossRef]
  8. R. W. McGowan and D. Grischkowsky, “Direct observation of Gouy phase shift in THz impulse ranging,” Appl. Phys. Lett. 76, 670–672 (2000). [CrossRef]
  9. D. M. Mittleman, R. H. Jacobsen, and M. C. Nuss, “T-ray imaging,” IEEE J. Sel. Top. Quantum Electron. 2, 679–692 (1996). [CrossRef]
  10. B. B. Hu and M. C. Nuss, “Imaging with terahertz waves,” Opt. Lett. 20, 1716–1718 (1995). [CrossRef] [PubMed]
  11. K. A. McIntosh, E. R. Brown, K. B. Nichols, O. B. McMahon, W. F. DiNatale, and T. M. Lyszczara, “Terahertz measurements of resonant planar antennas coupled to low-temperature-grown GaAs photomixers,” Appl. Phys. Lett. 69, 3632–3634 (1996). [CrossRef]
  12. S. Matsuura, M. Tani, and K. Sakai, “Generation of coherent radiation by photomixing in dipole photoconductive antennas,” Appl. Phys. Lett. 70, 559–561 (1997). [CrossRef]
  13. A. Nahata and T. F. Heinz, “Generation of subpicosecond electrical pulses by optical rectification,” Opt. Lett. 23, 867–869 (1998). [CrossRef]
  14. P. Uhd Jepsen, R. H. Jacobsen, and S. R. Keiding, “Generation and detection of terahertz pulses from biased semiconductor antennas,” J. Opt. Soc. Am. B 13, 2424–2436 (1996). [CrossRef]
  15. R. K. Lai, J. Hwang, T. B. Norris, and J. F. Whitaker, “A photoconductive, miniature terahertz source,” Appl. Phys. Lett. 72, 3100–3102 (1998). [CrossRef]
  16. C. W. Siders, J. L. W. Siders, A. J. Taylor, S. G. Park, M. R. Melloch, and A. M. Weiner, “Generation and characterization of terahertz pulse trains from biased, large-aperture photoconductors,” Opt. Lett. 24, 241–243 (1999). [CrossRef]
  17. X.-C. Zhang and D. H. Auston, “Optically induced THz electromagnetic radiation from planar photoconducting structures,” J. Electromagn. Waves Appl. 6, 85–106 (1992). [CrossRef]
  18. F. G. Sun, G. A. Wagoner, and X.-C. Zhang, “Measurement of free-space terahertz pulses via long-lifetime photoconductors,” Appl. Phys. Lett. 67, 1656–1658 (1995). [CrossRef]
  19. C. Wang, M. Currie, R. Sobolewski, and T. Y. Hsiang, “Subpicosecond electrical pulse generation by edge illumination of silicon and phosphide photoconductive switches,” Appl. Phys. Lett. 67, 79–81 (1995). [CrossRef]
  20. J. M. Proud, Jr., and S. L. Norman, “High-frequency generation using optoelectronic switching in silicon,” IEEE Trans. Microwave Theory Tech. 26, 137–140 (1978). [CrossRef]
  21. E. S. Weibel, “High power rf pulse generator,” Rev. Sci. Instrum. 35, 173–175 (1964). [CrossRef]
  22. H. M. Cronson, “Picosecond pulse sequential waveform generation,” IEEE Trans. Microwave Theory Tech. 23, 1048–1049 (1975). [CrossRef]
  23. C. H. Lee, “Picosecond optics and microwave technology,” IEEE Trans. Microwave Theory Tech. 38, 596–607 (1990). [CrossRef]
  24. J. B. Thaxter and R. E. Bell, “Experimental 6-GHz frozen wave generator with fiber-optic feed,” IEEE Trans. Microwave Theory Tech. 43, 1798–1803 (1995). [CrossRef]
  25. M. L. Forcier, M. F. Rose, L. F. Rinehart, and R. J. Gripshover, “Frozen-wave hertzian generators: theory and applications,” IEEE International Pulsed Power Conference Digest of Technical Papers (Institute of Electrical and Electronics Engineers, New York, 1979), Vol. 2, p. 221.
  26. Y. Pastol, G. Arjavalingam, J. M. Halbout, and G. V. Kopcsay, “Characterization of an optoelectronically pulsed broadband microwave antenna,” Electron. Lett. 24, 1318–1319 (1988). [CrossRef]
  27. P. R. Smith, D. H. Auston, and M. C. Nuss, “Subpicosecondphotoconducting dipole antenna,” IEEE J. Quantum Electron. 24, 255–260 (1988). [CrossRef]
  28. J. A. Valdmanis, G. Mourou, and C. W. Gabel, “Picosecond electro-optic sampling system,” Appl. Phys. Lett. 41, 211–212 (1982). [CrossRef]
  29. J. M. Chwalek and D. R. Dykaar, “A mixer based electro-optic sampling system for submillivolt signal detection,” Rev. Sci. Instrum. 61, 1273–1275 (1990). [CrossRef]
  30. J. F. Holzman, F. E. Vermeulen, and A. Y. Elezzabi, “Ultrafast photoconductive self-switching of subpicosecond electrical pulses,” IEEE J. Quantum Electron. 36, 130–136 (2000). [CrossRef]
  31. D. H. Auston, “Impulse response of photoconductors in transmission lines,” IEEE J. Quantum Electron. 19, 639–648 (1983). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited