Impurity-induced polaritons in a one-dimensional chain
JOSA B, Vol. 17, Issue 9, pp. 1498-1508 (2000)
http://dx.doi.org/10.1364/JOSAB.17.001498
Acrobat PDF (199 KB)
Abstract
A detailed analytical study of an impurity-induced polariton band arising inside a spectral gap between lower and upper polariton branches is presented. Using the microcanonical method, we calculate the density of states and the localization length of the impurity polaritons. Analytical results are compared with numerical simulations, and excellent agreement is found.
© 2000 Optical Society of America
OCIS Codes
(160.4760) Materials : Optical properties
(160.6000) Materials : Semiconductor materials
(260.0260) Physical optics : Physical optics
Citation
Alexey Yamilov, Lev I. Deych, and Alexander A. Lisyansky, "Impurity-induced polaritons in a one-dimensional chain," J. Opt. Soc. Am. B 17, 1498-1508 (2000)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-17-9-1498
Sort: Year | Journal | Reset
References
- S. John, “Electromagnetic absorption in a disordered medium near a photon mobility edge,” Phys. Rev. Lett. 53, 2169–2172 (1984).
- D. S. Wiersma, P. Bartolini, A. Lagendijk, and R. Righini, “Localization of light in a disordered medium,” Nature 390, 671–673 (1997).
- E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
- J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton University, Princeton, N.J., 1995).
- S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987).
- I. M. Lifshitz, “Some problems of the dynamic theory of non-ideal crystal lattices,” Nuovo Cimento 3, 716–734 (1956).
- I. M. Lifshitz and A. M. Kosevich, “The dynamics of a crystal lattice with defects,” in Lattice Dynamics (Benjamin, New York, 1969), pp. 53–90.
- I. M. Lifshitz and V. Ya. Kirpichnikov, “Tunnel transparency of disordered systems,” Sov. Phys. JETP 50, 499–511 (1979).
- A. A. Maradudin, “Some effects of point defects on the vibrations of crystal Lattices,” in Lattice Dynamics (Benjamin, New York, 1969), pp. 1–52.
- A. A. Maradudin, E. W. Montroll, G. H. Weiss, and I. P. Ipatova, Theory of Lattice Dynamics in the Harmonic Approximation, 2nd ed. (Academic, New York, 1971).
- B. I. Schklovskii and A. L. Efros, Electron Properties of Doped Semiconductors (Springer, New York, 1984).
- E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987); S. John and T. Quang, “Spontaneous emission near the edge of a photonic band gap,” Phys. Rev. A 50, 1764–1769 (1994).
- E. Yablonovitch, T. J. Gmitter, R. D. Meade, A. M. Rappe, K. D. Brommer, and J. D. Joannopoulos, “Donor and acceptor modes in photonic band structure,” Phys. Rev. Lett. 67, 3380–3383 (1991).
- R. D. Meade, K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, “Photonic bound states in periodic dielectric materials,” Phys. Rev. B 44, 13772–13774 (1991).
- V. I. Rupasov and M. Singh, “Quantum gap solitons and soliton pinning in dispersive medium and photonic-band-gap materials: Bethe-ansatz solution,” Phys. Rev. A 54, 3614–3625 (1996); “Two-atom problem and polariton-impurity band in dispersive media and photonic-band-gap materials,” Phys. Rev. A 56, 898–904 (1997)
- S. John and J. Wang, “Quantum electrodynamics near a photonic band gap: photon bound states and dressed atoms,” Phys. Rev. Lett. 64, 2418–2421 (1990); “Quantum optics of localized light in a photonic band gap,” Phys. Rev. B 43, 12772–12789 (1991)
- M. R. Singh and W. Lau, “Polariton effective mass and spectral density in III–IV semiconductors doped with an ordered chain of identical two-level atoms,” Phys. Status Solidi A 203, 401–410 (1997).
- A. A. Lisyansky and L. I. Deych, “Localization of polaritons by impurities,” Bull. Am. Phys. Soc. 42, 203–204 (1997); L. I. Deych and A. A. Lisyansky, “Local polariton states in polar crystals with impurities,” Phys. Lett. A 240, 329–333 (1998).
- V. S. Podolsky, L. I. Deych, and A. A. Lisyansky, “Local polariton states in impure ionic crystals,” Phys. Rev. B 57, 5168–5176 (1998).
- V. M. Shalaev, R. Botet, and A. V. Butenko, “Localization of collective dipole excitations on fractals,” Phys. Rev. B 48, 6662–6664 (1993); S. I. Bozhevolnyi, V. A. Markel, V. Coello, W. Kim, and V. Shalaev, “Direct observation of localized dipolar excitations on rough nanostructured surfaces,” Phys. Rev. B 58, 11441–11448 (1998).
- M. I. Stockman, L. N. Pandey, L. S. Muratov, and T. F. George, “Optical absorption and localization of eigenmodes in disordered clusters,” Phys. Rev. B 51, 185–195 (1995); M. I. Stockman, L. N. Pandey, and T. F. George, “Inhomogeneous localization of polar eigenmodes in fractals,” Phys. Rev. B 53, 2183–2186 (1996); M. I. Stockman, “Femtosecond optical responses of disordered clusters, composites, and rough surfaces: ‘the ninth wave’ effect,” Phys. Rev. Lett. PRLTAO 84, 1011–1014 (2000).
- L. I. Deych and A. A. Lisyansky, “Resonance tunneling of polaritons in 1-D chain with a single defect,” Phys. Lett. A 243, 156–162 (1998).
- L. I. Deych, A. Yamilov, and A. A. Lisyansky, “Defect-induced resonant tunneling of electromagnetic waves through a polariton gap,” Europhys. Lett. 46, 534–539 (1999).
- L. I. Deych, A. Yamilov, and A. A. Lisyansky, “Effects of resonant tunneling in electromagnetic wave propagation through a polariton gap,” Phys. Rev. B 59, 11339–11348 (1999).
- D. W. Taylor, “Phonon response theory and the infrared and Raman experiments,” in Optical Properties of Mixed Crystals, R. J. Elliott and I. P. Ipatova, eds. (North-Holland, Amsterdam, 1988), pp. 35–132.
- D. S. Citrin, “Exciton radiative decay and polaritons in multiquantum wells: quantum-well-to-superlattice crossover,” Solid State Commun. 89, 139–143 (1994).
- E. L. Ivchenko, A. I. Nesvizhskii, and S. Jorda, “Bragg reflection of light from quantum-well structures,” Phys. Solid State 36, 1156–1161 (1994).
- L. C. Andreani, “Polaritons in multiple quantum wells,” Phys. Status Solidi B 188, 29–42 (1995).
- T. Stroucken, A. Knorr, P. Thomas, and S. W. Koch, “Coherent dynamics of radiatively coupled quantum-well excitons,” Phys. Rev. B 53, 2026–2033 (1996).
- Y. Merle, D. Aubigné, A. Waseila, H. Mariette, and T. Dietl, “Polariton effects in multiple-quantum-well structures of CdTe/Cd_{1−x}Zn_{x}Te,” Phys. Rev. B 54, 14003–14011 (1996).
- M. Hübner, J. Kuhl, T. Stroucken, A. Knorr, S. W. Koch, R. Hey, and K. Ploog, “Collective effects of excitons in multiple-quantum-well Bragg and anti-Bragg structures,” Phys. Rev. Lett. 76, 4199–4202 (1996).
- M. Hübner, J. P. Prineas, C. Ell, P. Brick, E. S. Lee, G. Khitrova, H. M. Gibbs, and S. W. Koch, “Optical lattices achieved by excitons in periodic quantum well structures,” Phys. Rev. Lett. 83, 2841–2844 (1999).
- D. S. Citrin, “Waveguiding without a waveguide: local-mode exciton polaritons in multiple quantum wells,” Appl. Phys. Lett. 66, 994–996 (1995).
- A. Dereux, J.-P. Vigneron, P. Lambin, and A. Lucas, “Polaritons in semiconductor multilayered materials,” Phys. Rev. B 38, 5438–5452 (1988).
- M. L. H. Lahlaouti, A. Akjouj, B. Djafari-Rouhani, and L. Dobrzynski, “Resonant and localized electromagnetic modes in finite superlattices,” Phys. Rev. B 61, 2059–2064 (2000).
- D. Citrin, “Coherent transport of excitons in quantum-dot chains: role of retardation,” Opt. Lett. 20, 901–903 (1995).
- J. M. Deutsch and G. Paladin, “Product of random matrices in a microcanonical ensemble,” Phys. Rev. Lett. 62, 695–699 (1989).
- I. M. Lifshitz, S. A. Gredeskul, and L. A. Pastur, Introduction to the Theory of Disordered Systems (Wiley, New York, 1988).
- D. J. Thouless, “A relation between the density of states and range of localization for one dimensional random system,” J. Phys. C 5, 77–81 (1972).
Cited By |
Alert me when this paper is cited |
OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.
« Previous Article | Next Article »
OSA is a member of CrossRef.