OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 17, Iss. 9 — Sep. 1, 2000
  • pp: 1554–1564

Comparative study of nonlinear-optical polymers for guided-wave second-harmonic generation at telecommunication wavelengths

Tomáš Pliška, Wook-Rae Cho, Joachim Meier, Anne-Claire Le Duff, Vincent Ricci, Akira Otomo, Michael Canva, George I. Stegeman, Paul Raimond, and François Kajzar  »View Author Affiliations


JOSA B, Vol. 17, Issue 9, pp. 1554-1564 (2000)
http://dx.doi.org/10.1364/JOSAB.17.001554


View Full Text Article

Enhanced HTML    Acrobat PDF (259 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report on the linear and nonlinear-optical properties of 4-dimethylamino-4-nitrostilbene (DANS), 4-diethylamino-1-nitrobenzyl (DANB), and 4-[N-ethyl-N-(2-hydroxyethyl)]amino-4-nitroazobenzene) (Disperse Red 1;DR1) side chain polymers whose second-harmonic generation at the telecommunication wavelength of 1.55 μm was investigated. Measured ultraviolet–visible–near-infrared spectra were analyzed with an inhomogeneously broadened line-shape model, in particular, in the long-wavelength tail of the electronic transitions, which determines the absorption loss at the second-harmonic wavelength. The nonlinear-optical coefficients were measured at different poling temperatures and poling fields by the Maker fringe technique. On the basis of the measured material parameters we calculated the normalized conversion efficiencies for guided-wave second-harmonic generation at 1.55 μm. The DR1 polymer exhibited the best nonlinearity–absorption trade-off, with a calculated normalized conversion efficiency of several hundred percent per watt, whereas the figures of merit for DANS and DANB are lower and comparable with each other.

© 2000 Optical Society of America

OCIS Codes
(160.4330) Materials : Nonlinear optical materials
(160.4890) Materials : Organic materials
(160.5470) Materials : Polymers
(190.4390) Nonlinear optics : Nonlinear optics, integrated optics
(190.4400) Nonlinear optics : Nonlinear optics, materials
(190.4410) Nonlinear optics : Nonlinear optics, parametric processes

Citation
Tomáš Pliška, Wook-Rae Cho, Joachim Meier, Anne-Claire Le Duff, Vincent Ricci, Akira Otomo, Michael Canva, George I. Stegeman, Paul Raimond, and Francois Kajzar, "Comparative study of nonlinear-optical polymers for guided-wave second-harmonic generation at telecommunication wavelengths," J. Opt. Soc. Am. B 17, 1554-1564 (2000)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-17-9-1554


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. I. Stegeman, “Introduction to nonlinear guided wave optics,” in Guided Wave Nonlinear Optics, D. B. Ostrowsky and R. Reinisch, eds. (Kluwer Academic, Dordrecht, The Netherlands, 1992), pp. 11–27.
  2. K. Gallo, G. Assanto, and G. I. Stegeman, “Efficient wavelength shifting over the erbium amplifier bandwidth via cascaded second order processes in lithium niobate waveguides,” Appl. Phys. Lett. 71, 1020–1022 (1997). [CrossRef]
  3. G. I. Stegeman, D. J. Hagan, and L. Torner, “χ(2) cascading phenomena and their applications to all-optical signal processing, mode-locking, pulse compression and solitons,” Opt. Quantum Electron. 28, 1691–1740 (1996). [CrossRef]
  4. M. H. Chou, I. Brener, M. M. Fejer, E. E. Chaban, and S. B. Christman, “1.5-μm-band wavelength conversion based on cascaded second-order nonlinearity in LiNbO3 waveguides,” IEEE Photon. Technol. Lett. 11, 653–655 (1999). [CrossRef]
  5. D. Hofmann, G. Schreiber, C. Haase, H. Herrmann, W. Grundkoetter, R. Ricken, and W. Sohler, “Quasi-phase-matched difference-frequency generation in periodically poled Ti:LiNbO3 channel waveguides,” Opt. Lett. 24, 896–898 (1999). [CrossRef]
  6. D. S. Chemla and J. Zyss, eds., Nonlinear Optical Properties of Organic Molecules and Crystals (Academic, Orlando, Fla., 1987).
  7. H. S. Nalwa and S. Miyata, eds., Nonlinear Optics of Organic Molecules and Polymers (CRC Press, Boca Raton, Fla., 1997).
  8. C. Bosshard, K. Sutter, Ph. Pre⁁tre, J. Hulliger, M. Flörsheimer, P. Kaatz, and P. Günter, Organic Nonlinear Optical Materials (Gordon & Breach, London, 1995).
  9. D. Chen, H. R. Fetterman, A. Chen, W. H. Steier, L. R. Dalton, W. Wang, and Y. Shi, “Demonstration of 110 GHz electro-optic polymer modulators,” Appl. Phys. Lett. 70, 3335–3337 (1997). [CrossRef]
  10. K. Clays, J. S. Schildkraut, and D. J. Williams, “Phase-matched second-harmonic generation in a four-layered polymeric waveguide,” J. Opt. Soc. Am. B 11, 655–664 (1994). [CrossRef]
  11. T. C. Kowalczyk, K. D. Singer, and P. A. Cahill, “Anomalous-dispersion phase-matched second-harmonic generation in a polymer waveguide,” Opt. Lett. 20, 2273–227 (1995). [CrossRef] [PubMed]
  12. M. Jäger, G. I. Stegeman, S. Yilmaz, W. Wirges, W. Brinker, S. Bauer-Gogonea, S. Bauer, M. Ahlheim, M. Stählin, B. Zysset, F. Lehr, M. Diemeer, and M. C. Flipse, “Poling and characterization of polymer waveguides for modal dispersion phase-matching,” J. Opt. Soc. Am. B 15, 781–788 (1998). [CrossRef]
  13. L.-T. Cheng, W. Tam, S. H. Stevenson, G. R. Meredith, G. Rikken, and S. R. Marder, “Experimental investigations of organic molecular nonlinear optical polarizabilities. 1. Methods and results on benzene and stilbene derivatives,” J. Phys. Chem. 95, 10631–10643 (1991). [CrossRef]
  14. D. M. Burland, R. D. Miller, O. Reiser, R. J. Twieg, and C. A. Walsh, “The design, synthesis, and evaluation of chromophores for second-harmonic generation in a polymer waveguide,” J. Appl. Phys. 71, 410–417 (1992). [CrossRef]
  15. M. Jäger, V. Ricci, W. R. Cho, M. Canva, and G. I. Stegeman, “Advantages of modal-dispersion phase-matching and material requirements for polymeric devicesusing efficient second harmonic generation at telecommunication wavelengths,” Mater. Res. Soc. Symp. Proc. 488, 179–191 (1998). [CrossRef]
  16. A. Otomo, M. Jäger, G. I. Stegeman, M. Flipse, and M. Diemeer, “Key trade-offs for second harmonic generation in poled polymers,” Appl. Phys. Lett. 69, 1991–1993 (1996). [CrossRef]
  17. A.-C. Le Duff, V. Ricci, T. Pliška, M. Canva, G. I. Stegeman, K. P. Chan, and R. J. Twieg, “Importance of chromophore environment on the near infrared absorption of polymeric waveguides,” Appl. Opt. 39, 947–953 (2000). [CrossRef]
  18. M. Jäger, G. I. Stegeman, M. C. Flipse, M. Diemeer, and G. Möhlmann, “Modal dispersion phase matching over 7 mm length in overdamped polymeric channel waveguides,” Appl. Phys. Lett. 69, 4139–4141 (1996). [CrossRef]
  19. Q. Zhang, M. Canva, and G. I. Stegeman, “Wavelength dependence of 4-dimethylamino-4-nitrostilbene polymer thin film photodegradation,” Appl. Phys. Lett. 73, 912–914 (1998). [CrossRef]
  20. K. D. Singer, M. G. Kuzyk, and J. E. Sohn, “Second-order nonlinear-optical processes in orientationally ordered materials: relationship between molecular and macroscopic properties,” J. Opt. Soc. Am. B 4, 968–976 (1987). [CrossRef]
  21. C. P. J. M. van der Vorst and S. J. Picken, “Electric field poling of acceptor-donor molecules,” J. Opt. Soc. Am. B 7, 320–325 (1990). [CrossRef]
  22. C. J. F. Bottcher, Theory of Electric Polarization (Elsevier, Amsterdam, 1973).
  23. K. D. Singer and A. F. Garito, “Measurements of molecular second order optical susceptibilities using dc induced second harmonic generation,” J. Chem. Phys. 75, 3572–3580 (1981). [CrossRef]
  24. A. Skumanich, M. Jurich, and J. D. Swalen, “Absorption and scattering in nonlinear optical polymeric systems,” Appl. Phys. Lett. 62, 446–448 (1993). [CrossRef]
  25. P. K. Tien, “Light waves in thin films and integrated optics,” Appl. Opt. 10, 2395–2413 (1971). [CrossRef] [PubMed]
  26. K. D. Singer, J. E. Sohn, L. A. King, H. M. Gordon, H. E. Katz, and C. W. Dirk, “Second-order nonlinear-optical properties of donor- and acceptor-substituted aromatic compounds,” J. Opt. Soc. Am. B 6, 1339–1350 (1989). [CrossRef]
  27. M. Jäger, G. I. Stegeman, G. R. Möhlmann, M. C. Flipse, and M. J. B. Diemeer, “Second harmonic generation in polymeric channel waveguides using modal dispersion,” Electron. Lett. 32, 2009–2010 (1996). [CrossRef]
  28. W.-R. Cho, V. Ricci, T. Pliška, M. Canva, and G. I. Stegeman, “Second-harmonic generation in reactively-ion etched, Disperse Red 1 polymer waveguides at telecommunication wavelengths,” J. Appl. Phys. 86, 2941–2944 (1999). [CrossRef]
  29. T. Pliška, V. Ricci, L. Friedrich, A.-C. Le Duff, M. Canva, G. I. Stegeman, P. Raimond, and F. Kajzar, “Polymer waveguides for χ22-cascading at telecommunication wavelengths,” (presented at the 9th European Conference on Integrated Optics, Turin, Italy, April 14–16, 1999).
  30. P. A. M. Steeman, F. J. J. Maurer, and J. van Turnhout, “Dielectric properties of blends of polycarbonate and acrylonitrile-butadiene-styrene copolymer,” Polym. Eng. Sci. 34, 697–706 (1994). [CrossRef]
  31. K. Mazur, “More data about dielectric and electret properties of poly(methyl methacrylate),” J. Phys. D 30, 1383–1398 (1997). [CrossRef]
  32. A. Otomo, G. I. Stegeman, W. H. G. Horsthuis, and G. R. Möhlmann, “Strong field, in-plane poling for nonlinear optical devices in highly nonlinear side chain polymers,” Appl. Phys. Lett. 65, 2389–2391 (1994). [CrossRef]
  33. D. A. Roberts, “Simplified characterization of uniaxial and biaxial nonlinear optical crystals: a plea for standardization of nomenclature and conventions,” IEEE J. Quantum Electron. 28, 2057–2074 (1992). [CrossRef]
  34. Y. Shuto, T. Watanabe, S. Tomaru, I. Yokohama, M. Hikita, and M. Amano, “Quasi-phase-matched second-harmonic generation in diazo-dye-substituted polymer channel waveguides,” IEEE J. Quantum Electron. 33, 349–357 (1997). [CrossRef]
  35. T. Pliška, V. Ricci, A.-C. Le Duff, M. Canva, P. Raimond, F. Kajzar, and G. I. Stegeman, “Low loss polymer waveguides fabricated by plasma etching for nonlinear-optical devices at telecommunication wavelengths,” in Conference on Lasers Electro-Optics (CLEO/US), 1999 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1999), pp. 313–314.
  36. W. Wirges, S. Yilmaz, W. Brinker, S. Bauer-Gogonea, S. Bauer, M. Jäger, G. I. Stegeman, M. Ahlheim, M. Stählin, B. Zysset, F. Lehr, M. Diemeer, and M. C. Flipse, “Polymer waveguides with optimized overlap integral for modal dispersion phase-matching,” Appl. Phys. Lett. 70, 3347–3349 (1997). [CrossRef]
  37. W. E. Torruellas, R. Zanoni, G. I. Stegeman, G. R. Möhlmann, E. W. P. Erdhuisen, and W. H. G. Horsthuis, “The cubic susceptibility dispersion of alkoxy-nitro-stilbene (MONS) and di-alkyl-amino-nitro-stilbene (DANS) side chain susbtituted polymers: comparison with the two-level model,” J. Chem. Phys. 94, 6851–6856 (1991); Erratum, J. Chem. Phys. 96, 1662 (1992). [CrossRef]
  38. M. Cha, W. E. Torruellas, G. I. Stegeman, W. H. G. Horsthuis, G. R. Möhlmann, and J. Meth, “Two photon absorption of di-alkyl-amino-nitro-stilbene side chain polymer,” Appl. Phys. Lett. 65, 2648–2650 (1994). [CrossRef]
  39. D. Beljonne, J. L. Brédas, M. Cha, W. E. Torruellas, G. I. Stegeman, J. W. Hofstraat, W. H. G. Horsthuis, and G. R. Möhlmann, “Two-photon absorption and third-harmonic generation of di-alkyl-amino-nitro-stilbene (DANS): a joint experimental and theoretical study,” J. Chem. Phys. 103, 7834–7843 (1995). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited