OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 17, Iss. 9 — Sep. 1, 2000
  • pp: 1589–1598

Diode-pumped broadband vertical-external-cavity surface-emitting semiconductor laser applied to high-sensitivity intracavity absorption spectroscopy

A. Garnache, A. A. Kachanov, F. Stoeckel, and R. Houdré  »View Author Affiliations

JOSA B, Vol. 17, Issue 9, pp. 1589-1598 (2000)

View Full Text Article

Enhanced HTML    Acrobat PDF (209 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A diode-pumped broadband multiple-quantum-well vertical-external-cavity surface-emitting semiconductor laser has been developed for high-sensitivity intracavity laser-absorption spectroscopy. The semiconductor structure design has been optimized so as to provide maximum laser-emission bandwidth and wavelength tunability. The laser has a 100-mW threshold of continuous room-temperature operation, and it can be tuned within 25 nm around its design wavelength (980 nm). A detection limit lower than 10-10 per centimeter of absorption path has been achieved, given 3×10-11cm-1 Hz-1/2. Its spectro-temporal dynamics has been studied in the time range from a few microseconds to ∼1 s. No evidence of nonlinear mode interactions, which in many cases limit the sensitivity, has been observed. We have also shown that with a cavity length reduced to 2.5 cm, the laser is very attractive as a tunable single-frequency source owing to its stable operation in a single TEM00 mode at a pump power of up to 1 W.

© 2000 Optical Society of America

OCIS Codes
(120.6200) Instrumentation, measurement, and metrology : Spectrometers and spectroscopic instrumentation
(140.3480) Lasers and laser optics : Lasers, diode-pumped
(140.3570) Lasers and laser optics : Lasers, single-mode
(140.3600) Lasers and laser optics : Lasers, tunable
(250.7260) Optoelectronics : Vertical cavity surface emitting lasers

A. Garnache, A. A. Kachanov, F. Stoeckel, and R. Houdré, "Diode-pumped broadband vertical-external-cavity surface-emitting semiconductor laser applied to high-sensitivity intracavity absorption spectroscopy," J. Opt. Soc. Am. B 17, 1589-1598 (2000)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Garnache, A. Kachanov, F. Stoeckel, and R. Planel, “High-sensitivity intracavity laser absorption spectroscopy with vertical-external-cavity surface-emitting semiconductor lasers,” Opt. Lett. 24, 826–828 (1999). [CrossRef]
  2. E. Sviridenkov and L. Sinitsa, “Intracavity laser spectroscopy,” Proc. SPIE 3342, 1–270 (1998). [CrossRef]
  3. A. Kachanov, A. Charvat, and F. Stoeckle, “Intracavity laser spectroscopy with vibronic solid state lasers. I. Spectro-temporal transient behavior of a Ti:sapphire laser,” J. Opt. Soc. Am. B 11, 2412–2421 (1994). [CrossRef]
  4. D. Romanini, “Cavity-ringdown spectroscopy versus intra- cavity laser absorption,” ACS Symp. Ser. 720, 127 (1999).
  5. V. M. Baev, J. Eschner, E. Paeth, R. Schüler, and P. E. Toschek, “Intra-cavity spectroscopy with diode lasers,” Appl. Phys. B: Photophys. Laser Chem. 55, 463–477 (1992). [CrossRef]
  6. J. Sandusky and S. Brueck, “A CW external-cavity surface-emitting laser,” IEEE Photon. Technol. Lett. 8, 313–315 (1996). [CrossRef]
  7. M. Kuznetsov, F. Hakimi, R. Sprague, and A. Mooradian, “High-power (>0.5-W CW) diode-pumped vertical-external-cavity surface-emitting semiconductor lasers with circular TEM00 beams,” IEEE Photon. Technol. Lett. 9, 1063–1065 (1997). [CrossRef]
  8. M. Larson, M. Kondow, T. Kitatani, K. Tamura, Y. Yazawa, and M. Okai, “Photopumped lasing at 1.25 μm of GaInNAs-GaAs multiple-quantum-well vertical-cavity surface-emitting lasers,” IEEE Photon. Technol. Lett. 9, 1549–1551 (1997). [CrossRef]
  9. E. N. Antonov, P. S. Antsiferov, A. A. Kachanov, and V. G. Koloshnikov, “Parasitic selection in intracavity laser detection spectroscopy,” Opt. Commun. 41, 131–134 (1982). [CrossRef]
  10. V. R. Mironenko and V. I. Yudson, “Strong dependence of multimode laser generation spectrum on spatial localization of gain and losses,” Opt. Commun. 41, 126–130 (1982). [CrossRef]
  11. V. Jayaraman, J. Geske, M. MacDougal, F. Peters, T. Lowes, and T. Char, “Uniform threshold current, continuous-wave, single-mode 1300 nm vertical cavity lasers from 0 to 70 °C,” Electron. Lett. 34, 1405–1407 (1998). [CrossRef]
  12. G. Ungaro, J. Harmand, I. Sagnes, B. Sermage, J. Debray, C. Meriadec, T. Rivera, J. Oudar, and R. Raj, “Room-temperature continuous-wave operation VCSEL at 1.48 μm with Sb-based Bragg reflector,” Electron. Lett. 34, 1402–1404 (1998). [CrossRef]
  13. A. Baranov, Y. Rouillard, G. Boissier, P. Grech, S. Gaillard, and C. Alibert, “Sb-based monolithic VCSEL operating near 2.2 μm at room temperature,” Electron. Lett. 34, 281–282 (1998). [CrossRef]
  14. S. Corzine, R. Geels, J. Scott, R.-H. Yan, and L. Coldren, “Design of Fabry–Perot surface-emitting lasers with a periodic gain structure,” IEEE J. Quantum Electron. 25, 1513–1524 (1989). [CrossRef]
  15. M. Raja, S. Brueck, M. Osinki, C. Schaus, J. McInerney, T. Brennman, and B. Hammons, “Resonant periodic gain surface-emitting semiconductor lasers,” IEEE J. Quantum Electron. 25, 1500–1511 (1989). [CrossRef]
  16. J. Jewell, J. Harbison, A. Scherer, Y. Lee, and L. Florez, “Vertical cavity surface emitting lasers: design, growth, fabrication, characterization,” IEEE J. Quantum Electron. 27, 1332–1346 (1991). [CrossRef]
  17. P. S. Zory, Jr., Quantum Well Lasers (Academic, New York, 1993).
  18. F. Stoeckel, M. A. Mélières, and M. Chenevier, “Quantitative measurements of very weak H2O absorption lines by time resolved intracavity laser spectroscopy,” J. Chem. Phys. 76, 2191–2196 (1982). [CrossRef]
  19. F. Koyama, K. Morito, and K. Iga, “Intensity noise and polarization stability of GaAlAs–GaAs surface emitting lasers,” IEEE J. Quantum Electron. 27, 1410–1416 (1991). [CrossRef]
  20. V. M. Baev, T. P. Belikova, E. A. Sviridenkov, and A. F. Suchkov, “Intracavity laser spectroscopy with continuously and quasicontinuously operating lasers,” Sov. Phys. JETP 47, 21–29 (1978).
  21. F. Stoeckel and G. H. Atkinson, “Time evolution of a broad-band quasi-cw dye laser. Limitations of sensitivity in intracavity laser spectroscopy,” Appl. Opt. 24, 3591–3597 (1985). [CrossRef]
  22. A. Kachanov, A. Charvat, and F. Stoeckel, “Intracavity laser spectroscopy with vibronic solid state lasers. II. Influence of the nonlinear mode coupling on the maximum sensitivity of a Ti:sapphire laser,” J. Opt. Soc. Am. B 12, 970–979 (1995). [CrossRef]
  23. S. E. Vinogradov, A. A. Kachanov, S. A. Kovalenko, and E. A. Sviridenkov, “Nonlinear dynamics of a multimode dye laser with an adjustable resonator dispersion and implications for the sensitivity of in-resonator laser spectroscopy,” JETP Lett. 55, 581–585 (1992).
  24. J. Sierks, V. M. Baev, and P. E. Toschek, “Enhancement of the sensitivity of a multimode dye laser to intracavity absorption,” Opt. Commun. 96, 81–86 (1993). [CrossRef]
  25. E. Antonov, A. Kachanov, V. Mironenko, and T. Plakhotnik, “Dependence of the sensitivity of intracavity laser spectroscopy on generation parameters,” Opt. Commun. 46, 126–130 (1983). [CrossRef]
  26. A. Yariv, Quantum Electronics, 3rd ed. (Wiley, New York, 1989).
  27. D. Romanini, A. A. Kachanov, and F. Stoeckel, “Diode laser cavity ring down spectroscopy,” Chem. Phys. Lett. 270, 538–545 (1997). [CrossRef]
  28. A. Campargue, L. Biennier, A. Garnache, A. Kachanov, and D. Romanini, “High resolution absorption spectroscopy of the V1=2–6 acetylenic overtone bands of propyne: spectroscopy and dynamics,” J. Chem. Phys. 111, 7888–7903 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited