OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 17, Iss. 9 — Sep. 1, 2000
  • pp: 1616–1625

Detailed space-resolved characterization of a laser-plasma soft-x-ray source at 13.5-nm wavelength with tin and its oxides

Il Woo Choi, Hiroyuki Daido, Susumu Yamagami, Keiji Nagai, Takayoshi Norimatsu, Hideaki Takabe, Masayuki Suzuki, Takeyoshi Nakayama, and Tetsuya Matsui  »View Author Affiliations


JOSA B, Vol. 17, Issue 9, pp. 1616-1625 (2000)
http://dx.doi.org/10.1364/JOSAB.17.001616


View Full Text Article

Enhanced HTML    Acrobat PDF (455 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Space-resolved soft-x-ray spectra of laser-produced plasmas of pure-Sn metal and its oxides were measured in the spectral range 7–23 nm. We established a comprehensive spectroscopic database of the emission characteristics of the transition array of highly ionized Sn near 13.5-nm wavelength by varying the incident laser energy and the angle between the observation axis and the target normal. We examined the narrow spectral bandwidth of the transition array obtained by use of a gas-mixed fine-particle (SnO2 powder) target proposed by Matsui [Proc. SPIE 3886, 610 (2000) ]. We selected pure-Sn metal, SnO and SnO2 powder, and SnO2 thin-film targets with which to clarify the roles of additional constituent ions, such as O and Ar, in plasmas of the gas-mixed fine-particle targets. The space-resolved spectra show that the bandwidth of the transition array broadens dramatically and that the wavelength at peak intensity shifts slightly toward longer wavelengths with increasing distance from the original target surface or with decreasing incident laser energy. The origins of the broadening and the wavelength shift can be explained in terms of an increase in the range of ion stages that contribute to the transition array and in terms of transfer of the dominant ion stages to lower stages. The narrow bandwidth of the gas-mixed fine-particle target is probably due to the presence of a narrow range of moderate ion stages.

© 2000 Optical Society of America

OCIS Codes
(110.3960) Imaging systems : Microlithography
(260.7200) Physical optics : Ultraviolet, extreme
(300.6560) Spectroscopy : Spectroscopy, x-ray
(340.7470) X-ray optics : X-ray mirrors
(350.5400) Other areas of optics : Plasmas

Citation
Il Woo Choi, Hiroyuki Daido, Susumu Yamagami, Keiji Nagai, Takayoshi Norimatsu, Hideaki Takabe, Masayuki Suzuki, Takeyoshi Nakayama, and Tetsuya Matsui, "Detailed space-resolved characterization of a laser-plasma soft-x-ray source at 13.5-nm wavelength with tin and its oxides," J. Opt. Soc. Am. B 17, 1616-1625 (2000)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-17-9-1616


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. T. Silfvast, M. C. Richardson, H. Bender, A. Hanzo, V. Yanovsky, F. Jin, and T. Thorpe, “Laser-produced plasmas for soft x-ray projection lithography,” J. Vac. Sci. Technol. B 10, 3126–3133 (1992). [CrossRef]
  2. R. L. Kauffman, D. W. Phillion, and R. C. Spitzer, “X-ray production ~13 nm from laser-produced plasmas for projection x-ray lithography applications,” Appl. Opt. 32, 6897–6900 (1993). [CrossRef] [PubMed]
  3. R. C. Spitzer, T. J. Orzechowski, D. W. Phillion, R. L. Kauffman, and C. Cerjan, “Conversion efficiencies from laser-plasmas in the extreme ultraviolet regime,” J. Appl. Phys. 79, 2251–2258 (1996). [CrossRef]
  4. G. D. Kubiak, D. A. Tichenor, M. E. Malinowski, R. H. Stulen, S. J. Haney, K. W. Berger, J. E. Bjorkholm, R. R. Freeman, W. M. Mansfield, D. M. Tennant, O. R. Wood II, J. Bokor, T. E. Jewell, D. L. White, D. L. Windt, and W. K. Waskiewicz, “Diffraction-limited soft x-ray projection lithography with a laser plasma source,” J. Vac. Sci. Technol. B 9, 3184–3189 (1991). [CrossRef]
  5. G. O’Sullivan and P. K. Carroll, “4d–4f emission resonance in laser-produced plasmas,” J. Opt. Soc. Am. 71, 227–230 (1981). [CrossRef]
  6. G. M. Zeng, H. Daido, K. Murai, Y. Kato, M. Nakatsuka, and S. Nakai, “Line x-ray emissions from highly ionized plasmas of various species irradiated by compact solid-state lasers,” J. Appl. Phys. 72, 3355–3363 (1992); G. M. Zeng, H. Daido, T. Nishikawa, H. Takabe, S. Nakayama, H. Aritome, K. Murai, Y. Kato, M. Nakatsuka, and S. Nakai, “Soft x-ray spectra of highly ionized elements with atomic numbers ranging from 57 to 82 produced by compact lasers,” J. Appl. Phys. 75, 1923–1930 (1994). [CrossRef]
  7. N. M. Ceglio, A. M. Hawryluk, and G. E. Sommargren, “Front-end design issues in soft x-ray projection lithography,” Appl. Opt. 32, 7050–7056 (1993). [CrossRef] [PubMed]
  8. D. G. Stearns, R. S. Rosen, and S. P. Vernon, “Multilayer mirror technology for soft-x-ray projection lithography,” Appl. Opt. 32, 6952–6960 (1993). [CrossRef] [PubMed]
  9. J. M. Bridges, C. L. Cromer, and T. J. McIlrath, “Investigation of a laser-produced plasma VUV light source,” Appl. Opt. 25, 2208–2214 (1986). [CrossRef] [PubMed]
  10. H. Fiedorowicz, A. Bartnik, M. Szczurek, H. Daido, N. Sakaya, V. Kmetik, Y. Kato, M. Suzuki, M. Matsumura, J. Tajima, T. Nakayama, and T. Wilhein, “Investigation of soft x-ray emission from a gas puff target irradiated with a Nd:YAG laser,” Opt. Commun. 163, 103–114 (1999). [CrossRef]
  11. A. Shimoura, S. Amano, S. Miyamoto, and T. Mochizuki, “X-ray generation in cryogenic targets irradiated by a 1-μm pulsed laser,” Appl. Phys. Lett. 72, 164–166 (1998). [CrossRef]
  12. M. Richardson, W. T. Silfvast, H. A. Bender, A. Hanzo, V. P. Yanovsky, F. Jin, and J. Thorpe, “Characterization and control of laser plasma flux parameters for soft x-ray projection lithography,” Appl. Opt. 32, 6901–6910 (1993). [CrossRef] [PubMed]
  13. T. Matsui and N. Kogawa, “Laser plasma x-ray source using a gas target of mixed fine particles,” in High-Power Lasers in Energy Engineering, K. Mima, G. L. Kulcinski, and W. Hogan, eds., Proc. SPIE 3886, 610–617 (2000). [CrossRef]
  14. P. K. Carroll and G. O’Sullivan, “Ground-state configurations of ionic species I through XVI for Z=57–74 and the interpretation of 4d–4f emission resonances in laser-produced plasmas,” Phys. Rev. A 25, 275–286 (1982). [CrossRef]
  15. G. O’Sullivan and R. Faulkner, “Tunable narrowband soft x-ray source for projection lithography,” Opt. Eng. 33, 3978–3983 (1994). [CrossRef]
  16. G. O’Sullivan, “The spectra of laser produced plasmas with lanthanide targets,” in Giant Resonances in Atoms, Molecules and Solids, J. P. Connerade, J. M. Esteva, and R. Karnatak, eds., Vol. 151 of NATO Advanced Study Institute Series B: Physics (Plenum, New York, 1987), pp. 505–532.
  17. T. Kita, T. Harada, N. Nakano, and H. Kuroda, “Mechanically ruled aberration-corrected concave gratings for a flat-field grazing-incidence spectrograph,” Appl. Opt. 22, 512–513 (1983). [CrossRef] [PubMed]
  18. I. W. Choi, J. U. Lee, and C. H. Nam, “Space-resolving flat-field extreme ultraviolet spectrograph system and its aberration analysis with wave-front aberration,” Appl. Opt. 36, 1457–1466 (1997). [CrossRef] [PubMed]
  19. R. L. Kelly, “Atomic and ionic spectrum lines below 2000 angstroms: hydrogen through krypton,” J. Phys. Chem. Ref. Data Suppl. 1 16, 223 (1987).
  20. R. Fabbro, C. Max, and E. Fabre, “Planar laser-driven ablation: effect of inhibited electron thermal conduction,” Phys. Fluids 28, 1463–1481 (1985). [CrossRef]
  21. J. D. Huba, NRL Plasma Formulary (Naval Research Laboratory, Washington, D.C., 1998), p. 29.
  22. H. Takabe and T. Ishii, “Effect of nonuniform implosion on high-gain inertial confinement fusion targets,” Jpn. J. Appl. Phys. 32, 5675–5680 (1993). [CrossRef]
  23. P. Mandelbaum, M. Finkenthal, J. L. Schwob, and M. Klapisch, “Interpretation of the quasicontinuum band emitted by highly ionized rare-earth elements in the 70–100-Å range,” Phys. Rev. A 35, 5051–5059 (1987). [CrossRef] [PubMed]
  24. J. Bauche, C. Bauche-Arnoult, and M. Klapisch, “Transition arrays in the spectra of ionized atoms,” Adv. At. Mol. Phys. 23, 131–195 (1988). [CrossRef]
  25. W. Svendsen and G. O’Sullivan, “Statistics and characteristics of XUV transition arrays from laser-produced plasmas of the elements tin through iodine,” Phys. Rev. A 50, 3710–3718 (1994). [CrossRef] [PubMed]
  26. C. Cerjan, “X-ray plasma source design simulations,” Appl. Opt. 32, 6911–6913 (1993). [CrossRef] [PubMed]
  27. A. P. Shevelko, L. A. Shmaenok, S. S. Churilov, R. K. F. J. Bastiaensen, and F. Bijkerk, “Extreme ultraviolet spectroscopy of a laser plasma source for lithography,” Phys. Scr. 57, 276–282 (1998). [CrossRef]
  28. B. Rus, P. Zeitoun, T. Mocek, S. Sebban, M. Kálal, A. Demir, G. Jamelot, A. Klisnick, B. Králiková, J. Skála, and G. J. Tallents, “Investigation of Zn and Cu prepulse plasmas relevant to collisional excitation x-ray lasers,” Phys. Rev. A 56, 4229–4241 (1997). [CrossRef]
  29. H. R. Griem, Principles of Plasma Spectroscopy (Cambridge U. Press, Cambridge, 1997), Chap. 8, p. 223.
  30. B. L. Henke, P. Lee, T. J. Tanaka, R. L. Shimabukuro, and B. K. Fujikawa, “Low-energy x-ray interaction coefficients: photo absorption, scattering, and reflection E= 100–2000 eV Z=1–94,” At. Data Nucl. Data Tables 27, 1–144 (1982). [CrossRef]
  31. D. P. Gaines, R. C. Spitzer, N. M. Ceglio, M. Krumrey, and G. Ulm, “Radiation hardness of molybdenum silicon multilayers designed for use in a soft-x-ray projection lithography system,” Appl. Opt. 32, 6991–6998 (1993). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited