OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 18, Iss. 1 — Jan. 1, 2001
  • pp: 75–80

Optical stripes and bullets for a modified nonlinear Schrödinger equation

C. Polymilis, D. J. Frantzeskakis, A. N. Yannacopoulos, K. Hizanidis, and G. Rowlands  »View Author Affiliations

JOSA B, Vol. 18, Issue 1, pp. 75-80 (2001)

View Full Text Article

Acrobat PDF (144 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We study the existence, formation, and stability of quasi-one-dimensional (stripes) and two-dimensional (bullets) spatio-temporal soliton solutions for a (2+1)-dimensional modified nonlinear Schrödinger equation, in the presence of the self-steepening effect. These solutions, which are on top of a continuous-wave background, are either dark or antidark, the latter being supported by the self-steepening effect. We show that there exist stable small-amplitude lump solitons, which, in the context of nonlinear optics, constitute novel light bullets.

© 2001 Optical Society of America

OCIS Codes
(190.4420) Nonlinear optics : Nonlinear optics, transverse effects in
(190.5530) Nonlinear optics : Pulse propagation and temporal solitons

C. Polymilis, D. J. Frantzeskakis, A. N. Yannacopoulos, K. Hizanidis, and G. Rowlands, "Optical stripes and bullets for a modified nonlinear Schrödinger equation," J. Opt. Soc. Am. B 18, 75-80 (2001)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. N. N. Akhmediev and A. Ankiewicz, Solitons: Nonlinear Pulses and Beams (Chapman & Hall, London, 1997).
  2. G. P. Agrawal, Nonlinear Fiber Optics, 2nd ed. (Academic, New York, 1995).
  3. J. R. de Oliveira and M. A. de Moura, “Analytical solution for the modified nonlinear Schrödinger equation describing optical shock formation,” Phys. Rev. E 57, 4751–4756 (1998).
  4. V. E. Vekslerchik, “Dark soliton of the generalized nonlinear Schrödinger equation,” Phys. Lett. A 153, 195–198 (1991).
  5. D. J. Frantzeskakis, “Small-amplitude solitary structuresfor an extended nonlinear Schrödinger equation,” J. Phys. A Math. Nucl. Gen. 29, 3631–3639 (1996).
  6. Yu. S. Kivshar and B. Luther-Davies, “Dark optical solitons: physics and applications,” Phys. Rep. 298, 1181–1197 (1998).
  7. E. A. Kuznetsov and S. K. Turitsyn, “Instability and collapse of solitons in media with a defocusing nonlinearity,” Zh. Eksp. Teor. Fiz. 94, 119–129 (1988) [Sov. Phys. JETP 67, 1583–1588 (1988)].
  8. E. Infeld and G. Rowlands, Nonlinear Waves, Solitons and Chaos (Cambridge University, London, 1990).
  9. D. J. Frantzeskakis, K. Hizanidis, B. A. Malomed, and C. Polymilis, “Stable antidark light bullets supported by the third-order dispersion,” Phys. Lett. A 248, 203–207 (1998).
  10. Y. Silberberg, “Collapse of optical pulses,” Opt. Lett. 15, 1282–1284 (1990).
  11. Y. Chen and J. Atai, “Dark optical bullets in light self-trapping,” Opt. Lett. 20, 133–135 (1995).
  12. B. A. Malomed, P. Drummond, H. He, A. Berntson, D. Anderson, and M. Lisak, “Spatiotemporal solitons in multidimensional optical media with a quadratic nonlinearity,” Phys. Rev. E 56, 4725–4735 (1997).
  13. G. Gottwald, R. Grimshaw, and B. A. Malomed, “Stable two-dimensional parametric solitons in fluid systems,” Phys. Lett. A 248, 208–218 (1998).
  14. X. Liu, L. J. Qian, and F. W. Wise, “Generation of optical spatiotemporal solitons,” Phys. Rev. Lett. 82, 4631–4633 (1999).
  15. M. Blaauboer, B. A. Malomed, and G. Kurizki, “Spatiotemporally localized multidimensional solitons in self-induced transparency media,” Phys. Rev. Lett. 84, 1906–1909 (2000).
  16. T. Taniuti, “Reductive perturbation method and far fields of wave equations,” Prog. Theor. Phys. Suppl. 55, 1–35 (1974).
  17. Yu. S. Kivshar and V. V. Afanasjev, “Dark optical solitons with reverse-sign amplitude,” Phys. Rev. A 44, R1446–R1449 (1991).
  18. G. Huang and M. G. Velarde, “Head-on collisions of dark solitons near the zero-dispersion point in optical fibers,” Phys. Rev. A 54, 3048–3051 (1996).
  19. H. E. Nistazakis, D. J. Frantzeskakis, P. S. Balourdos, A. Tsigopoulos, and B. A. Malomed, “Dynamics of anti-dark and dark solitons in (2+1)-dimensional generalized nonlinear Schrödinger equation,” Phys. Lett. A (to be published).
  20. V. Petviashvili and O. Pokhotelov, Solitary Waves in Plasmas and in the Atmosphere (Gordon and Breach, Philadelphia, 1992).
  21. I. S. Gradshtein and I. M. Ryzhik, Table of Integrals, Series and Products (Academic, London, 1980).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited