OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 18, Iss. 11 — Nov. 1, 2001
  • pp: 1587–1596

Laser amplification without population inversion on the D1 line of the Cs atom with semiconductor diode lasers

Parminder S. Bhatia, George R. Welch, and Marlan O. Scully  »View Author Affiliations

JOSA B, Vol. 18, Issue 11, pp. 1587-1596 (2001)

View Full Text Article

Enhanced HTML    Acrobat PDF (448 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The importance of lasing without inversion (LWI) in comparison with the use of nonlinear optical techniques and techniques based on high-intensity femtosecond light pulses to generate high-frequency coherent radiation is outlined. The original development and utilization of an experimental facility based on semiconductor diode lasers to study the fundamental aspects of LWI on the D1 line of the Cs atom, which is rarely attempted, is described. This experimental facility is used to observe inversionless amplification on the D1 line of the Cs atom by use of a Λ atomic scheme. A combination of EIT and broadband pumping of atoms from the lower to the upper level of the probe transition allowed the observation of the inversionless gain. Justification for the absence of inversion in the probe transition is provided. We report a single-pass inversionless gain of ≈11% with relatively weak incoherent pumping. The results show improvement over the previously reported inversionless gain observed in Na, Rb, and Cs, illustrating the potential advantage of using the D1 line of Cs.

© 2001 Optical Society of America

OCIS Codes
(030.1640) Coherence and statistical optics : Coherence
(030.1670) Coherence and statistical optics : Coherent optical effects
(140.3280) Lasers and laser optics : Laser amplifiers
(140.3460) Lasers and laser optics : Lasers
(140.4480) Lasers and laser optics : Optical amplifiers
(270.1670) Quantum optics : Coherent optical effects

Parminder S. Bhatia, George R. Welch, and Marlan O. Scully, "Laser amplification without population inversion on the D1 line of the Cs atom with semiconductor diode lasers," J. Opt. Soc. Am. B 18, 1587-1596 (2001)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. Lee and M. O. Scully, “Manifestation of quantum interference in lasing without inversion,” Z. Naturforsch. Teil A 54, 33–38 (1999).
  2. M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge U. Press, Cambridge, 1997).
  3. M. O. Scully and M. Fleischhauer, “Lasers without inversion,” Science 263, 337–338 (1994). [CrossRef] [PubMed]
  4. J. Mompart and R. Corbalan, “Lasing without inversion,” J. Opt. B. Quantum Semiclassical Opt. 2, R7–R24 (2000). [CrossRef]
  5. A. Sher, Lasers without Inversion and Electromagnetically Induced Transparency (SPIE Press, Bellingham, Wash., 1998).
  6. O. Svelto, Principles of Lasers (Plenum, New York, 1998).
  7. J. Bokor, A. R. Neureuther, and W. G. Oldham, “Advanced lithography for ULSI,” IEEE Circuits Devices Mag. 12, 11–15 (1996). [CrossRef]
  8. Y. R. Shen, The Principles of Nonlinear Optics (Wiley, New York, 1984).
  9. M. M. Fejer, “Nonlinear optical frequency conversion,” Phys. Today 47(5), 25–32 (1994). [CrossRef]
  10. A. Rundquist, C. G. Durfee, Z. Chang, C. Herne, S. Backus, M. M. Murnane, and H. C. Kapteyn, “Phase-matched generation of coherent soft x-rays,” Science 280, 1412–1415 (1998). [CrossRef] [PubMed]
  11. J. J. Macklin, J. D. Kmetec, and C. L. Gordon, “High-order harmonic generation using intense femtosecond pulses,” Phys. Rev. Lett. 70, 766–769 (1993). [CrossRef] [PubMed]
  12. M. M. Murnane, H. C. Kapteyn, and R. W. Falcone, “Generation of efficient ultrafast laser plasma x-ray source,” Phys. Fluids B 3, 2409–2413 (1991). [CrossRef]
  13. A. Sullivan, H. Hamster, H. C. Kapteyn, S. Gordon, W. White, N. Nathel, R. J. Blair, and R. W. Falcone, “Multiterawatt 100-fs laser,” Opt. Lett. 16, 1406–1408 (1991). [CrossRef] [PubMed]
  14. D. L. Matthews and P. L. Hagelstein, “Demonstration of a soft x-ray amplifier,” Phys. Rev. Lett. 54, 110–113 (1985). [CrossRef] [PubMed]
  15. O. Kocharovskaya and Y. I. Khanin, “Coherent amplification of an ultrashort pulse in a three-level medium without a population inversion,” JETP Lett. 48, 630–634 (1988).
  16. S. E. Harris, “Lasers without inversion: interference of a lifetime-broadened resonances,” Phys. Rev. Lett. 62, 1033–1036 (1989). [CrossRef] [PubMed]
  17. M. O. Scully, S. Zhu, and A. Gavrielides, “Degenerate quantum-beat laser: lasing without inversion and inversion without lasing,” Phys. Rev. Lett. 62, 2813–2816 (1989). [CrossRef] [PubMed]
  18. L. M. Narducci, H. M. Doss, P. Ru, M. O. Scully, S. Y. Zhu, and C. Keitel, “A simple model of laser without inversion,” Opt. Commun. 81, 379–384 (1991). [CrossRef]
  19. L. M. Narducci, M. O. Scully, C. H. Keitel, S. Y. Zhu, and H. M. Doss, “Physical origin of the gain in a four-level model of a Raman driven laser without inversion,” Opt. Commun. 86, 324–332 (1991). [CrossRef]
  20. H. Fearn, C. Keitel, M. O. Scully, and S. Zhu, “Lasing without inversion in a simple model of a three-level laser with microwave coupling,” Opt. Commun. 87, 323–330 (1992). [CrossRef]
  21. M. Fleischhauer, C. H. Keitel, L. M. Narducci, M. O. Scully, S. Zhu, and M. S. Zubairy, “Lasing without inversion: interference of radiatively broadened resonances in dressed atomic system,” Opt. Commun. 94, 599–608 (1992). [CrossRef]
  22. O. Kocharovskaya, P. Mandel, and Y. V. Radeonychev, “Inversionless amplification in a three-level medium,” Phys. Rev. A 45, 1997–2005 (1992). [CrossRef] [PubMed]
  23. M. O. Scully, S. Y. Zhu, and H. Fearn, “Lasing without inversion. I. Initial atomic coherence,” Z. Phys. D 22, 471–481 (1992). [CrossRef]
  24. S. Y. Zhu, M. O. Scully, H. Fearn, and L. M. Narducci, “Lasing without inversion. II. Raman process created atomic coherence,” Z. Phys. D 22, 471–481 (1992).
  25. M. Fleischhauer and M. O. Scully, “Lasing without inversion versus optical pumping and lasing without inversion assisted by optical pumping,” Opt. Commun. 105, 79–83 (1994). [CrossRef]
  26. M. Fleischhauer, T. McIllrath, and M. O. Scully, “Coherent population trapping and Fano-type interferences in lasing without inversion,” Appl. Phys. B 60, S123–S127 (1995).
  27. O. Kocharovskaya, Y. V. Rostovtsev, and A. Imamoglu, “Inversionless amplification in the three-level atoms with and without hidden inversion in reservoir,” Phys. Rev. A 58, 649–654 (1998). [CrossRef]
  28. O. Kocharovskaya, R. Kolesov, and Y. Rostovtsev, “Lasing without inversion: a new path to gamma-ray laser,” Laser Phys. 9, 745–758 (1999).
  29. A. Imamoglu and R. J. Ram, “Semiconductor lasers without populatrion inversion,” Opt. Commun. 19, 1744–1746 (1994).
  30. A. Imamoglu, R. J. Ram, S. Pau, and Y. Yamamoto, “Nonequilibrium condensates and lasers without inversion,” Phys. Rev. A 53, 4250–4253 (1996). [CrossRef] [PubMed]
  31. J. Faist, F. Capasso, C. Sirtori, D. L. Sivco, and A. Hutchinson, “Quantum cascade lasers without intersubband population inversion,” Phys. Rev. Lett. 76, 411–414 (1996). [CrossRef] [PubMed]
  32. J. Gao, C. Guo, X. Guo, G. Jin, P. Wang, J. Zhao, H. Zhang, Y. Jiang, D. Wang, and D. Jiang, “Observation of light amplification without population inversion in sodium,” Opt. Commun. 93, 323–327 (1992). [CrossRef]
  33. A. Nottelmann, C. Peters, and W. Lange, “Inversionless amplification of picosecond pulses due to Zeeman coherence,” Phys. Rev. Lett. 70, 1783–1786 (1993). [CrossRef] [PubMed]
  34. W. E. van der, R. J. J. van Diest, A. Donszelmann, and H. B. van den Hauvell, “Experimental demonstration of light amplification without population inversion,” Phys. Rev. Lett. 70, 3243–3246 (1993). [CrossRef]
  35. F. B. de Jong, A. Mavromanolakis, R. J. C. Spreeuw, and H. B. van Linden van den Heuvell, “Synchronously pumped laser without inversion in cadmium,” Phys. Rev. A 57, 4869–4876 (1998). [CrossRef]
  36. E. S. Fry, X. Li, D. Nikonov, G. G. Padmabandu, M. O. Scully, A. V. Smith, F. K. Tittel, C. Wang, S. R. Wilkinson, and S. Zhu, “Atomic coherence effects within the sodium D1 line: lasing without inversion via population trapping,” Phys. Rev. Lett. 70, 3235–3238 (1993). [CrossRef] [PubMed]
  37. J. A. Kleinfeld and A. D. Streater, “Observation of gain due to coherence effects in a potassium–helium mixture,” Phys. Rev. A 49, R4301–R4304 (1994). [CrossRef]
  38. A. S. Zibrov, M. D. Lukin, D. E. Nikonov, L. Hollberg, M. O. Scully, V. L. Velichansky, and H. G. Robinson, “Experimental demonstration of laser oscillation without population inversion via quantum interference in Rb,” Phys. Rev. Lett. 75, 1499–1502 (1995). [CrossRef] [PubMed]
  39. C. Fort, F. S. Cataliotti, T. W. Hänsch, M. Inguscio, and M. Prevedelli, “Gain without inversion on the Cs D1 line,” Opt. Commun. 139, 31–34 (1997). [CrossRef]
  40. G. G. Padmabandu, G. R. Welch, I. N. Shubin, E. S. Fry, D. E. Nikonov, M. D. Lukin, and M. O. Scully, “Laser oscillation without population inversion in sodium atomic beam,” Phys. Rev. Lett. 76, 2053–2056 (1996). [CrossRef] [PubMed]
  41. P. S. Bhatia, G. R. Welch and M. O. Scully, “A single mode semiconductor diode laser operating in strong feedback regime and tunable within D1 line of Cs atom,” Opt. Commun. 189, 321–336 (2001). [CrossRef]
  42. E. Arimondo and G. Orriols, “Nonabsorbing atomic coherences by coherent two-photon transitions in a three-level optical pumping,” Nuovo Cimento 17, 333–338 (1976).
  43. G. Alzetta, A. Gozzini, L. Moi, and G. Orriols, “An experimental method for the observation of R. F. transitions and laser beat resonances in oriented Na vapor,” Nuovo Cimento B 36, 5–20 (1976). [CrossRef]
  44. M. D. Lukin, M. O. Scully, G. R. Welch, E. S. Fry, L. Hollberg, C. G. Padmabandu, H. G. Robinson, and A. S. Zibrov, “Lasing without inversion: the road to new short-wavelength lasers,” Laser Phys. 6, 436–447 (1996).
  45. D. E. Nikonov, M. O. Scully, M. D. Lukin, E. S. Fry, L. W. Hollberg, G. G. Padmbandu, G. R. Welch, and A. S. Zibrov, “Lasing without inversion: a dream come true,” in Coherent Phenomena and Amplification without Inversion, A. L. Andreev, O. A. Kocharovskaya, and P. Mandel, eds., Proc. SPIE 2798, 342–350 (1996). [CrossRef]
  46. www.exciton.com.
  47. P. F. Moulton, “Spectroscopy and laser characteristics of Ti:Al2O3,” J. Opt. Soc. Am. B 3, 125–133 (1986). [CrossRef]
  48. D. Waarts, “Semiconductor lasers for frequency conversion,” in Compact Blue-Green Lasers, Vol. 1 of 1994 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1994), p. 56.
  49. ftp://optocan_guest:optocan@ftp.perkinelmer.com/Optocan/, Optoelectronics Division, EG & G Canada LTEE/Ltd., Vaudreuil, Quebec, Canada.
  50. W. T. Welford, Aberrations of the Symmetrical Optical System (Academic, New York, 1974).
  51. S. E. Harris, “Electromagnetically induced transparency,” Phys. Today 50(7), 36–42 (1997). [CrossRef]
  52. P. S. Bhatia, G. R. Welch, and M. O. Scully, “LWI gain free from Raman gain,” Phys. Rev. Lett. (to be published).
  53. P. Pillet, C. Valentin, R. L. Yuan, and J. Yu, “Adiabatic population transfer in a multilevel system,” Phys. Rev. A 48, 845–848 (1993). [CrossRef] [PubMed]
  54. M. Weitz, B. C. Young, and S. Chu, “Atom interferometer based on adiabatic population transfer,” Phys. Rev. Lett. 73, 2563–2566 (1994). [CrossRef] [PubMed]
  55. L. S. Goldner, C. Gerz, R. J. C. Spreeuw, S. L. Rolston, C. I. Westbrook, and W. D. Phillips, “Momentum transfer in laser-cooled cesium by adiabatic passage in a light field,” Phys. Rev. Lett. 72, 997–1000 (1994). [CrossRef] [PubMed]
  56. K. J. Boller, A. Imamoglu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66, 2593–2596 (1991). [CrossRef] [PubMed]
  57. S. Zhu, D. E. Nikonov, and M. O. Scully, “A scheme for noninversion lasing for short wavelength lasers in helium like ions,” Found. Phys. 28, 611–619 (1998). [CrossRef]
  58. S. F. Yelin, M. D. Lukin, M. O. Scully, and P. Mandel, “Gain without inversion in the frequency up-conversion regime,” Phys. Rev. A 47, 3858–3868 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited