OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 18, Iss. 12 — Dec. 1, 2001
  • pp: 1813–1820

Two-photon absorption in potassium niobate

A. D. Ludlow, H. M. Nelson, and S. D. Bergeson  »View Author Affiliations


JOSA B, Vol. 18, Issue 12, pp. 1813-1820 (2001)
http://dx.doi.org/10.1364/JOSAB.18.001813


View Full Text Article

Acrobat PDF (253 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report measurements of thermal self-locking of a Fabry–Perot cavity containing a potassium niobate (KNbO3) crystal. We develop a method to determine linear and nonlinear optical absorption coefficients in intracavity crystals by detailed analysis of the transmission line shapes. These line shapes are typical of optical bistability in thermally loaded cavities. For our crystal we determine the one-photon absorption coefficient at 846 nm to be α=(0.0034±0.0022) m−1, the two-photon absorption coefficient at 846 nm to be β=(3.2±0.5)×10−11 m/W, and the one-photon absorption coefficient at 423 nm to be (13±2) m−1. We also address the issue of blue-light-induced infrared-absorption and determine a coefficient for this excited state absorption process. Our method is particularly well suited to bulk absorption measurements where absorption is small compared with scattering. We also report new measurements of the temperature dependence of the index of refraction at 846 nm and compare with values in the literature.

© 2001 Optical Society of America

OCIS Codes
(160.4330) Materials : Nonlinear optical materials
(190.1450) Nonlinear optics : Bistability
(190.4180) Nonlinear optics : Multiphoton processes
(190.4870) Nonlinear optics : Photothermal effects

Citation
A. D. Ludlow, H. M. Nelson, and S. D. Bergeson, "Two-photon absorption in potassium niobate," J. Opt. Soc. Am. B 18, 1813-1820 (2001)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-18-12-1813


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. A. Arie, S. Schiller, E. K. Gustafson, and R. L. Byer, “Absolute frequency stabilization of diode-laser-pumped Nd: YAG lasers to hyperfine transitions in molecular iodine,” Opt. Lett. 17, 1204–1206 (1992).
  2. E. S. Polzik and H. J. Kimble, “Frequency doubling with KNbO3 in an external cavity,” Opt. Lett. 16, 1400–1402 (1991).
  3. A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986).
  4. P. Dube, L.-S. Ma, J. Ye, P. Jungner, and J. L. Hall, “Thermally induced self-locking of an optical cavity by overtone absorption in acetylene gas,” J. Opt. Soc. Am. B 13, 2041–2054 (1996).
  5. K. An, B. A. Sones, C. Fang-Yen, R. R. Dasari, and M. S. Feld, “Optical bistability induced by mirror absorption: measurement of absorption coefficients at the sub-ppm level,” Opt. Lett. 22, 1433–1435 (1997).
  6. A. Douillet, J.-J. Zondy, A. Yelisseyev, S. Lobanov, and L. Isaenko, “Stability and frequency tuning of thermally loaded continuous-wave AgGaS2 optical parametric oscillators,” J. Opt. Soc. Am. B 16, 1481–1495 (1999).
  7. L. E. Busse, L. Goldberg, M. R. Surette, and G. Mizell, “Absorption losses in MgO-doped and undoped potassium niobate,” J. Appl. Phys. 75, 1102–1110 (1994).
  8. Our extended cavity laser is a Vortex laser from New Focus Corp. (5215 Hellyer Ave., Suite 100 San Jose, Calif. 95138–1001). The tapered amplifier is a Model 8613 laser from SDL (80 Rose Orchard Way, San Jose, Calif. 95134–1365) with the rear cavity optics removed, configured as a single-pass amplifier.
  9. R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
  10. Our crystal is from VLOC, 7826 Photonics Drive, New Port Richey, Fla. 34655.
  11. L. Goldberg, L. E. Busse, and D. Mehuys, “High power continuous wave blue light generation in KNbO3 using semiconductor simplifier seeded by a laser diode,” Appl. Phys. Lett. 63, 2327–2329 (1993).
  12. H. Mabuchi, E. S. Polzik, and H. J. Kimble, “Blue-light-induced infrared absorption in KNbO3,” J. Opt. Soc. Am. B 11, 2023–2029 (1994).
  13. L. Shiv, J. L. Sorensen, and E. S. Polzik, “Inhibited light-induced absorption in KNbO3,” Opt. Lett. 20, 2270–2272 (1995).
  14. G. Ghosh, “Dispersion of thermo-optic coefficients in a potassium niobate nonlinear crystal,” Appl. Phys. Lett. 65, 3311–3313 (1994).
  15. R. L. Sutherland, Handbook of Nonlinear Optics (Marcel Dekker, New York, 1996), p. 502.
  16. M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions (Dover, New York, 1970), p. 228.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited