Experimental and theoretical study of linewidth narrowing in Brillouin fiber ring lasers
JOSA B, Vol. 18, Issue 4, pp. 556-567 (2001)
http://dx.doi.org/10.1364/JOSAB.18.000556
Acrobat PDF (210 KB)
Abstract
In Brillouin fiber lasers, the phase fluctuations of the pump laser are transferred to the emitted Stokes field after being strongly reduced. The result is a linewidth narrowing that we study both experimentally and theoretically. We derive simple expressions to connect the linewidths of the waves interacting in the fiber, and we show that the magnitude of the narrowing effect depends only on the acoustic damping rate and the cavity loss rate. We successfully compare these theoretical predictions with experimental results obtained by recording the response of a Brillouin fiber ring laser to frequency modulation of the pump field.
© 2001 Optical Society of America
OCIS Codes
(030.1640) Coherence and statistical optics : Coherence
(140.3560) Lasers and laser optics : Lasers, ring
(190.4370) Nonlinear optics : Nonlinear optics, fibers
(290.5900) Scattering : Scattering, stimulated Brillouin
Citation
Alexis Debut, Stéphane Randoux, and Jaouad Zemmouri, "Experimental and theoretical study of linewidth narrowing in Brillouin fiber ring lasers," J. Opt. Soc. Am. B 18, 556-567 (2001)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-18-4-556
Sort: Year | Journal | Reset
References
- G. P. Agrawal, Nonlinear Fiber Optics (Academic, New York, 1989).
- D. Cotter, “Stimulated Brillouin scattering in monomode optical fiber,” J. Opt. Commun. 4, 10–19 (1983).
- M. Niklès, L. Thévenaz, and P. A. Robert, “Brillouin gain spectrum characterization in single mode optical fibers,” J. Lightwave Technol. 15, 1842–1851 (1997), and references therein.
- C. Montes, D. Bahloul, I. Bongrand, J. Botineau, G. Cheval, A. Mamhoud, E. Picholle, and A. Picozzi, “Self-pulsing and dynamic bistability in cw-pumped Brillouin fiber ring lasers,” J. Opt. Soc. Am. B 16, 932–951 (1999), and references therein.
- S. Randoux, V. Lecoeuche, B. Ségard, and J. Zemmouri, “Dynamical analysis of Brillouin fiber lasers: an experimental approach,” Phys. Rev. A 51, 2327–2334 (1995).
- C. Montes, A. Mamhoud, and E. Picholle, “Bifurcation in a cw-pumped Brillouin fiber-ring laser: coherent soliton morphogenesis,” Phys. Rev. A 49, 1344–1349 (1994).
- Y. Tanaka and K. Hotate, “Analysis of fiber Brillouin ring laser composed of single-polarization single-mode fiber,” J. Lightwave Technol. 15, 838–844 (1997), and references therein.
- S. P. Smith, F. Zarinetchi, and S. Ezekiel, “Narrow-linewidth stimulated Brillouin fiber laser and applications,” Opt. Lett. 16, 393–395 (1991).
- A. Debut, S. Randoux, and J. Zemmouri, “Linewidth narrowing in Brillouin lasers: Theoretical analysis,” Phys. Rev. A 62, 023803–1–023803–4 (2000).
- A. L. Schawlow and C. H. Townes, “Infrared and optical masers,” Phys. Rev. 112, 1940–1949 (1958).
- N. Lu, “Effect of laser intensity fluctuations on laser linewidth,” Phys. Rev. A 47, 4322–4330 (1993).
- M. P. van Exter, W. A. Hamel, and J. P. Woerdman, “Nonuniform phase diffusion in a laser,” Phys. Rev. A 43, 6241–6246 (1991).
- S. Prasad, “Theory of a homogeneously broadened laser with arbitrary mirror outcoupling: intrinsic linewidth and phase diffusion,” Phys. Rev. A 46, 1540–1559 (1992).
- S. J. M. Kuppens, M. P. van Exter, and J. P. Woerdman, “Quantum-limited linewidth of a bad-cavity laser,” Phys. Rev. Lett. 72, 3815–3818 (1994).
- M. P. van Exter, S. J. M. Kuppens, and J. P. Woerdman, “Theory for the linewidth of a bad-cavity laser,” Phys. Rev. A 51, 809–816 (1995).
- C. Benkert, M. O. Scully, and G. Süssmann, “Memory correlation effects on quantum noise in lasers and masers,” Phys. Rev. A 41, 6119–6128 (1990).
- M. I. Kolobov, L. Davidovitch, E. Giacobino, and C. Fabre, “Role of pumping statistics and dynamics of atomic polarization in quantum fluctuations of laser sources,” Phys. Rev. A 47, 1431–1446 (1993).
- M. Sargent III, M. O. Scully, and W. E. Lamb, Jr., Laser Physics (Addison-Wesley, Reading, Mass., 1974), Chap. 17.
- P. Goldberg, P. W. Milonni, and B. Sundaram, “Theory of the fundamental laser linewidth,” Phys. Rev. A 44, 1969–1985 (1991).
- P. Goldberg, P. W. Milonni, and B. Sundaram, “Theory of the fundamental laser linewidth. II,” Phys. Rev. A 44, 4556–4563 (1991).
- C. H. Henry, “Phase noise in semiconductor lasers,” J. Lightwave Technol. 4, 298–311 (1986).
- R. Walser and P. Zoller, “Laser-noise-induced polarization fluctuations as a spectroscopic tool,” Phys. Rev. A 49, 5067–5077 (1994).
- C. H. Henry, “Theory of the linewidth of semiconductor lasers,” IEEE J. Quantum Electron. QE-18, 259–264 (1982).
- K. Vahala and A. Yariv, “Semiclassical theory of noise in semiconductor lasers. I,” IEEE J. Quantum Electron. QE-19, 1096–1101 (1983).
- K. Vahala and A. Yariv, “Semiclassical theory of noise in semiconductor lasers. II,” IEEE J. Quantum Electron. QE-19, 1102–1109 (1983).
- M. P. van Exter, W. A. Hamel, J. P. Woerdman, and B. R. P. Zeijlmans, “Spectral signature of relaxation oscillations in semiconductor lasers,” IEEE J. Quantum Electron. 28, 1470–1478 (1992).
- L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge U. Press, Cambridge, 1995), Chap. 2.
- C. Zhu, “Statistics of nonclassical lasers generated via pump-noise suppression,” Phys. Rev. A 48, 3930–3946 (1993).
- S. Machida, Y. Yamamoto, and Y. Itaya, “Observation of amplitude squeezing in a constant-current-driven semiconductor laser,” Phys. Rev. Lett. 58, 1000–1003 (1987).
- M. A. M. Marte and P. Zoller, “Lasers with sub-Poissonian pump,” Phys. Rev. A 40, 5774–5782 (1989).
- H. Ritsch, P. Zoller, C. W. Gardiner, and D. F. Walls, “Sub-Poissonian laser light by dynamic pump-noise suppression,” Phys. Rev. A 44, 3361–3364 (1991).
- H. Ritsch and P. Zoller, “Dynamic quantum-noise reduction in multilevel-laser systems,” Phys. Rev. A 45, 1881–1892 (1992).
- C. Becher and K. Boller, “Low-intensity-noise operation of Nd:YVO_{4} microchip lasers by pump noise suppression,” J. Opt. Soc. Am. B 16, 286–295 (1999).
- J. Bergou, L. Davidovitch, M. Orszag, C. Benkert, M. Hillery, and M. O. Scully, “Role of pumping statistics in maser and laser dynamics: density-matrix approach,” Phys. Rev. A 40, 5073–5080 (1989).
- C. Benkert, M. O. Scully, J. Bergou, L. Davidovitch, M. Hillery, and M. Orszag, “Role of pumping statistics in laser dynamics: quantum Langevin approach,” Phys. Rev. A 41, 2756–2765 (1990).
- Y. Yamamoto, S. Machida, and O. Nilsson, “Amplitude squeezing in a pump-noise-suppressed laser oscillator,” Phys. Rev. A 34, 4025–4042 (1986).
- G. S. Agarwal, “Inhibition of spontaneous emission noise in lasers without inversion,” Phys. Rev. Lett. 67, 980–982 (1991).
- H. Ritsch, M. A. M. Marte, and P. Zoller, “Quantum noise reduction in Raman lasers,” Europhys. Lett. 19, 7–12 (1992).
- H. Ritsch and M. A. M. Marte, “Quantum noise in Raman lasers: effects of pump bandwidth and super- and sub-Poissonian pumping,” Phys. Rev. A 47, 2354–2365 (1993).
- M. Fleischhauer, M. D. Lukin, D. E. Nikonov, and M. O. Scully, “Influence of pump-field phase diffusion on laser gain in a double-Λ non-inversion laser,” Opt. Commun. 110, 351–357 (1994).
- K. M. Gheri, D. F. Walls, and M. A. Marte, “Systematic description of laser phase by linearized Ito equations,” Phys. Rev. A 46, 6002–6009 (1992).
- S. Gong, Z. Xu, Z. Zhang, and S. Pan, “Change from an inversion laser to a noninversion laser due to a phase-fluctuation effect,” Phys. Rev. A 52, 4787–4790 (1995).
- X. Hu and J. Peng, “Effects of pump phase noise on the linewidth of a Λ-laser without inversion: linewidth reduction,” Chin. Phys. Lett. 15, 571–573 (1998).
- S. Prasad, “Quantum noise and squeezing in an optical parametric oscillator with arbitrary output-mirror coupling. III. Effect of pump amplitude and phase fluctuations,” Phys. Rev. A 49, 1406–1426 (1994), and references therein.
- P. D. Drummond and M. D. Reid, “Laser bandwidth effects on squeezing in intracavity parametric oscillation,” Phys. Rev. A 37, 1806–1808 (1988).
- A. L. Gaeta and R. W. Boyd, “Stochastic dynamics of stimulated Brillouin scattering in an optical fiber,” Phys. Rev. A 44, 3205–3209 (1991).
- R. W. Boyd, K. Rzażewski, and P. Narum, “Noise initiation of stimulated Brillouin scattering,” Phys. Rev. A 42, 5514–5521 (1990).
- A. Yariv and W. M. Caton, “Frequency, intensity, and field fluctuations in laser oscillators,” IEEE J. Quantum Electron. QE-10, 509–515 (1974).
- A. L. Gaeta and R. W. Boyd, “Stimulated Brillouin scattering in the presence of external feedback,” Int. J. Nonlinear Opt. Phys. 1, 581–594 (1992).
- V. Lecoeuche, S. Randoux, B. Ségard, and J. Zemmouri, “Dynamics of a Brillouin fiber ring laser: off-resonant case,” Phys. Rev. A 53, 2822–2828 (1996).
- M. P. van Exter, S. J. M. Kuppens, and J. P. Woerdman, “Excess phase noise in self-heterodyne detection,” IEEE J. Quantum Electron. 28, 580–584 (1992).
- S. Randoux, V. Lecoeuche, B. Ségard, and J. Zemmouri, “Dynamical behavior of a Brillouin fiber ring laser emitting two Stokes components,” Phys. Rev. A 52, 2327–2334 (1995).
- A. Yariv, Quantum Electronics, 3rd ed. (Wiley, New York, 1988), Chap. 21.
- J. Boschung, L. Thévenaz, and P. A. Robert, “High-accuracy measurement of the linewidth of a Brillouin fibre ring laser,” Electron. Lett. 30, 1488–1489 (1994).
- R. W. Boyd, Nonlinear Optics (Academic, San Diego, Calif., 1992), Chap. 7.
- S. Randoux and J. Zemmouri, “Polarization dynamics of a Brillouin fiber ring laser,” Phys. Rev. A 59, 1644–1653 (1999).
- A. Papoulis, Signal Analysis (McGraw-Hill, New York, 1984), Chap. 8.
- D. Zwillinger, ed., Standard Mathematical Tables and Formulae, 30th ed. (CRC Press, Boca Raton, Fla., 1996).
- D. Heiman, D. S. Hamilton, and R. W. Hellwarth, “Brillouin scattering measurements on optical glasses,” Phys. Rev. B 19, 6583–6592 (1979).
- B. C. Young, F. C. Cruz, W. M. Itano, and J. C. Bergquist, “Visible lasers with subhertz linewidths,” Phys. Rev. Lett. 82, 3799–3802 (1999).
Cited By |
Alert me when this paper is cited |
OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.
OSA is a member of CrossRef.