OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 18, Iss. 5 — May. 1, 2001
  • pp: 602–609

Optical transitions and frequency upconversion of Er3+ ions in Na2O·Ca3Al2Ge3O12 glasses

H. Lin, E. Y. B. Pun, S. Q. Man, and X. R. Liu  »View Author Affiliations

JOSA B, Vol. 18, Issue 5, pp. 602-609 (2001)

View Full Text Article

Enhanced HTML    Acrobat PDF (190 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Er3+-doped and Er3+/Yb3+-codoped Na2O·Ca3Al2Ge3O12 glasses that are suitable for use in optical waveguide devices have been fabricated and characterized. The density, the refractive indices, the optical absorption, the Judd–Ofelt parameters, and the spontaneous transition probabilities of the glasses have been measured and calculated. Intense 1.533-µm fluorescence was observed in these glass systems under 798- and 973-nm excitation, and the quantum efficiency was ∼100%. Efficient upconversion luminescence at 525, 547, and 659 nm at room temperature was also observed. At a pump intensity of 1220 W/cm2 at 798 nm, frequency upconversion efficiencies of 0.98×10-2 and 1.03×10-2 were obtained for green and red emissions, respectively. The standardized value for green emission is higher than those reported for lead germanate, lead tellurium germanate, silicate, and phosphate glasses. Under 973-nm excitation, the enhancement of 1533-nm emission and visible upconversion fluorescence in Er3+/Yb3+-codoped glasses are confirmed, and the sensitizing is due to efficient energy transfer from Yb3+ to Er3+.

© 2001 Optical Society of America

OCIS Codes
(160.2750) Materials : Glass and other amorphous materials
(160.3130) Materials : Integrated optics materials
(160.5690) Materials : Rare-earth-doped materials
(190.7220) Nonlinear optics : Upconversion
(250.5230) Optoelectronics : Photoluminescence
(300.6280) Spectroscopy : Spectroscopy, fluorescence and luminescence

H. Lin, E. Y. B. Pun, S. Q. Man, and X. R. Liu, "Optical transitions and frequency upconversion of Er3+ ions in Na2O୼Ca3Al2Ge3O12 glasses," J. Opt. Soc. Am. B 18, 602-609 (2001)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. E. Roman, P. Camy, M. Hempstead, W. S. Brocklesby, S. Nouth, A. Beguin, C. Lerminiaux, and J. S. Wilkinson, “Ion-exchanged Er/Yb waveguide laser at 1.5 μm pumped by laser diode,” Electron. Lett. 31, 1345–1346 (1995). [CrossRef]
  2. X. Zou and T. Izumitani, “Spectroscopic properties and mechanisms of excited state absorption and energy transfer upconversion for Er3+-doped glasses,” J. Non-Cryst. Solids 162, 68–80 (1993). [CrossRef]
  3. G. L. Vossler, C. L. Brooks, and K. A. Winik, “Planar Er: Yb glass ion exchanged waveguide laser,” Electron. Lett. 31, 1162–1163 (1995). [CrossRef]
  4. K. Hattori, T. Kitagawa, M. Oguma, H. Okazaki, and Y. Ohmori, “Optical amplification in Er3+-doped P2O5-SiO2 planar waveguides,” J. Appl. Phys. 80, 5301–5308 (1996). [CrossRef]
  5. H. Yamada and K. Kojima, “Upconversion fluorescence in Er3+-doped Na2O-GeO2 glasses,” J. Non-Cryst. Solids 259, 57–62 (1999). [CrossRef]
  6. T. Luo, S. Jiang, G. N. Conti, S. Honkanen, S. B. Mendes, and N. Peyghambarian, “Ag+–Na+ exchanged channel waveguides in germanate glass,” Electron. Lett. 34, 2239–2240 (1998). [CrossRef]
  7. F. Bucholtz, K. J. Ewing, M. Putnam, and C. G. Askins, “Photoluminescence of Bragg grating in germanosilicate,” Electron. Lett. 32, 1130–1131 (1996). [CrossRef]
  8. H. Higuchi, M. Takahashi, Y. Kawamoto, K. Kadono, T. Ohtsuki, N. Peyghambarian, and N. Kitamura, “Optical transitions and frequency upconversion emission of Er3+ ions in Ga2S3–GeS2–La2S3 glasses,” J. Appl. Phys. 83, 19–27 (1998). [CrossRef]
  9. A. Bjarklev, Optical Fiber Amplifiers: Design and System Applications, (Artech House, Boston, Mass., 1993), pp. 1–5.
  10. E. Snoeks, G. N. van den Hoven, and A. Polman, “Optimization of an Er-doped silica glass optical waveguide amplifier,” IEEE J. Quantum Electron. 32, 1680–1684 (1996). [CrossRef]
  11. M. Tsuda, K. Soga, H. Inoue, S. Inoue, and A. Makishima, “Upconversion mechanism in Er3+-doped fluorozirconate glasses under 800 nm excitation,” J. Appl. Phys. 85, 29–37 (1999). [CrossRef]
  12. X. X. Zhang, P. Hong, M. Bass, and B. H. T. Chai, “Blue upconversion with excitation into Tm ions at 780 nm in Yb- and Tm-codoped fluoride crystals,” Phys. Rev. B 51, 9298–9301 (1995). [CrossRef]
  13. T. J. Whitley, C. A. Millar, R. Wyatt, M. C. Brierley, and D. Szebesta, “Upconversion pumped green lasing in erbium doped fluorozirconate fibre,” Electron. Lett. 27, 1785–1786 (1991). [CrossRef]
  14. T. Miyakama and D. L. Dexter, “Cooperative and stepwise excitation of luminescence: trivalent rare-earth ions in Yb3+-sensitized crystals,” Phys. Rev. B 1, 70–80 (1970). [CrossRef]
  15. D. C. Yeh, W. A. Sibley, M. Suscavage, and M. G. Drexhage, “Multiphonon relaxation and infrared-to-visible conversion of Er3+ and Yb3+ ions in barium-thorium fluoride glass,” J. Appl. Phys. 62, 266–275 (1987). [CrossRef]
  16. M. P. Hehlen, N. J. Cockroft, T. P. Gosnell and A. J. Bruce, “Spectroscopic properties of Er3+- and Yb3+-doped soda-lime silicate and aluminosilicate glasses,” Phys. Rev. B 56, 9302–9318 (1997). [CrossRef]
  17. X. Zhang, J. Yuan, X. Liu, J. P. Jouart, and G. Mary, “Red laser induced upconversion luminescence in Er-doped calcium aluminum germanate garnet,” J. Appl. Phys. 82, 3987–3991 (1997). [CrossRef]
  18. C. V. Poulsen, J. Hubner, T. Rasmussen, L. U. A. Andersen, and M. Kristensen, “Characterisation of dispersion properties in planar waveguides using UV-induced Bragg grating,” Electron. Lett. 31, 1437–1438 (1995). [CrossRef]
  19. C. Montero, C. Gomez-Reino, and J. L. Brebner, “Planar Bragg gratings made by excimer laser modification of ion-exchanged waveguide,” Opt. Lett. 24, 1487–1489 (1999). [CrossRef]
  20. B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev. 127, 750–761 (1962). [CrossRef]
  21. G. S. Ofelt, “Intensities of crystal spectra of rare-earth ions,” J. Chem. Phys. 37, 511–520 (1962). [CrossRef]
  22. W. T. Carnall, P. R. Fields, and K. Rajnak, “Spectral Intensities of the trivalent lanthanides and actinides in solution. II. Pm3+, Sm3+, Eu3+, Gd3+, Tb3+, Dy3+, and Ho3+,” J. Chem. Phys. 49, 4412–4423 (1968). [CrossRef]
  23. W. T. Carnall, P. R. Fields, and K. Rajnak, “Electronic energy levels in the trivalent lanthanide aquo ions. I. Pr3+, Nd3+, Pm3+, Sm3+, Dy3+, Ho3+, Er3+ and Tm3+,” J. Chem. Phys. 49, 4424–4442 (1968). [CrossRef]
  24. C. K. Jorgensen and R. Reisfeld, “Judd–Ofelt parameters and chemical bonding,” J. Less-Common Met. 93, 107–112 (1983). [CrossRef]
  25. M. J. Weber, “Probabilities for radiative and nonradiative decay of Er3+ in LaF3,” Phys. Rev. 157, 262–272 (1967). [CrossRef]
  26. Z. Pun, S. H. Morgan, K. Dyer, A. Ueda, and H. Liu, “Host-dependent optical transitions of Er3+ ions in lead-germanate and lead-tellurium-germanate glasses,” J. Appl. Phys. 79, 8906–8913 (1996). [CrossRef]
  27. R. S. Quimby, M. G. Drexhage, and M. J. Suscavage, “Efficient frequency up-conversion via energy transfer in fluoride glasses,” Electron. Lett. 23, 32–33 (1987). [CrossRef]
  28. S. Q. Man, E. Y. B. Pun, and P. S. Chung, “Upconversion luminescence of Er3+ in alkali bismuth gallate glasses,” Appl. Phys. Lett. 77, 483–485 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited