OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 18, Iss. 6 — Jun. 1, 2001
  • pp: 785–793

Photorefractive polymeric solitons supported by orientationally enhanced birefringent and electro-optic effects

Fang-Wen Sheu and Ming-Feng Shih  »View Author Affiliations

JOSA B, Vol. 18, Issue 6, pp. 785-793 (2001)

View Full Text Article

Acrobat PDF (214 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We predict and analyze the formation of photorefractive polymeric solitons, which are supported by both the orientationally enhanced birefringence and the orientationally enhanced electro-optic effects. The formation conditions and characteristics of this new type of optical spatial soliton are discussed.

© 2001 Optical Society of America

OCIS Codes
(160.5320) Materials : Photorefractive materials
(160.5470) Materials : Polymers
(190.5530) Nonlinear optics : Pulse propagation and temporal solitons
(250.5460) Optoelectronics : Polymer waveguides

Fang-Wen Sheu and Ming-Feng Shih, "Photorefractive polymeric solitons supported by orientationally enhanced birefringent and electro-optic effects," J. Opt. Soc. Am. B 18, 785-793 (2001)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. R. Y. Chiao, E. Garmire, and C. H. Townes, “Self-trapping of optical beams,” Phys. Rev. Lett. 13, 479–482 (1964).
  2. P. L. Kelley, “Self-focusing of optical beams,” Phys. Rev. Lett. 15, 1005–1008 (1965).
  3. V. E. Zakharov and A. M. Rubenchik, “Instability of waveguides and solitons in nonlinear media,” Sov. Phys. JETP 38, 494–500 (1974).
  4. M. Segev, B. Crosignani, A. Yariv, and B. Fischer, “Spatial solitons in photorefractive media,” Phys. Rev. Lett. 68, 923–926 (1992).
  5. M. Segev, G. C. Valley, B. Crosignani, P. Diporto, and A. Yariv, “Steady-state spatial screening solitons in photorefractive materials with external applied field,” Phys. Rev. Lett. 73, 3211–3214 (1994).
  6. D. N. Christodoulides and M. Carvalho, “Bright, dark, and gray spatial soliton states in photorefractive media,” J. Opt. Soc. Am. B 12, 1628–1633 (1995).
  7. M. Segev, M. Shih, and G. C. Valley, “Photorefractive screening solitons of high and low intensity,” J. Opt. Soc. Am. B 13, 706–718 (1996).
  8. G. C. Valley, M. Segev, B. Crosignani, A. Yariv, M. M. Fejer, and M. C. Bashaw, “Dark and bright photovoltaic spatial solitons,” Phys. Rev. A 50, R4457–R4460 (1994).
  9. M. Taya, M. Bashaw, M. M. Fejer, M. Segev, and G. C. Valley, “Observation of dark photovoltaic spatial solitons,” Phys. Rev. A 52, 3095–3100 (1995).
  10. M. Segev, G. C. Valley, M. C. Bashaw, M. Taya, and M. M. Fejer, “Photovoltaic spatial solitons,” J. Opt. Soc. Am. B 14, 1772–1781 (1997).
  11. M. Segev and A. J. Agranat, “Spatial solitons in centrosymmetric photorefractive media,” Opt. Lett. 22, 1299–1301 (1997).
  12. M. Chauvet, S. Hawkins, G. Salamo, M. Segev, D. Bliss, and G. Bryant, “Self-trapping of planar optical beams by use of the photorefractive effect in InP:Fe,” Opt. Lett. 21, 1333–1335 (1996); “Self-trapping of two-dimensional optical beams and light-induced waveguiding in photorefractive InP at telecommunication wavelengths,” Appl. Phys. Lett. 70, 2499–2501 (1997).
  13. M. Segev and G. Stegeman, “Self-trapping of optical beams: spatial solitons,” Phys. Today 51(8), 42–48 (1998), and references therein.
  14. S. Ducharme, J. C. Scott, R. J. Twieg, and W. E. Moerner, “Observation of the photorefractive effect in a polymer,” Phys. Rev. Lett. 66, 1846–1849 (1991).
  15. C. Poga, P. Lundquist, V. Lee, R. Shelby, R. Twieg, and D. Burland, “Polysiloxane-based photorefractive polymers for digital holographic data storage,” Appl. Phys. Lett. 69, 1047–1049 (1996).
  16. P. Günter and J.-P. Huignard, Photorefractive Materials and Their Applications (Springer, Berlin, 1988 and 1989); Vols. 1 and 2.
  17. K. Meerholz, B. L. Volodin, Sandalphon, B. Kippelen, and N. Peyghambarian, “A photorefractive polymer with high optical gain and diffraction efficiency near 100%,” Nature (London) 371, 497–500 (1994); M. Liphardt, A. Goonesekera, B. Jones, S. Ducharme, J. Takacs, and L. Zhang, “High-performance photorefractive polymers,” Science 263, 367–369 (1994).
  18. W. E. Moerner and S. M. Silence, “Polymeric photorefractive materials,” Chem. Rev. 94, 127–155 (1994).
  19. A. Grunnet-Jepsen, C. L. Thompson, R. J. Twieg, and W. E. Moerner, “High performance photorefractive polymer with improved stability,” Appl. Phys. Lett. 70, 1515–1517 (1997).
  20. W. E. Moerner, S. M. Silence, F. Hache, and G. C. Bjorklund, “Orientationally enhanced photorefractive effect in polymers,” J. Opt. Soc. Am. B 11, 320–330 (1994).
  21. M. Shih and F. Sheu, “Photorefractive polymeric optical spatial solitons,” Opt. Lett. 24, 1853–1855 (1999).
  22. J. W. Wu, “Birefringent and electro-optic effects in poled polymer films: steady-state and transient properties,” J. Opt. Soc. Am. B 8, 142–152 (1991).
  23. By J. X. Mack, L. B. Schein, and A. Peled, “Hole mobilities in hydrazone-polycarbonate dispersions,” Phys. Rev. B 39, 7500–7508 (1989), hole mobility μ∝ exp[C(E−1)], where C is an experimentally determined constant.
  24. By Onsager model [P. J. Melz, “Photogeneration in trinitrofluorenone-poly(n-vinylcarbazole),” J. Chem. Phys. 57, 1694–1699 (1972)], quantum efficiency φ∝Em, for the static dc field E between 10 and 100 V/μm, where m is a material parameter ranging from less than 1.0 to greater than 3.0.
  25. Both approximations were justified physically619 in terms of the inequality Ed≪E≪Eq, where Eq and Ed are the limiting space-charge field and the diffusion field, respectively, evaluated at the soliton width of no less than 5 μm.
  26. 〈cosm θ〉=∫0π cosm θ exp(−U/ kBTa)sin θ dθ/∫0πexp(−U /kB Ta)×sinθ dθ, where U=−μD⋅E0−p⋅E0/2 is the dipole interaction energy, kB is the Boltzmann constant, and Ta is the ambient temperature. We can safely neglect the induced dipole energy, p⋅E0/2, since for typical photorefractive polymers22 with the orientational enhancement photorefractive effect, μD≅10 D and Δα0=5×10−23 cm3, under the dc field E<100 V/μm, the induced dipole energy is less than 1/60 of the total energy U. Thus U≅−μD⋅E0=−μDE cos θ.
  27. A. Galvan-Gonzalez, M. Canva, G. Stegeman, R. Twieg, K.-P. Chan, T. Kowalczyk, X. Zhang, and H. Lackritz, “Systematic behavior of electro-optic chromophore photostability,” Opt. Lett. 25, 332–334 (2000).
  28. C. Moylan, R. Wortmann, R. Twieg, and I. McComb, “Improved characterization of chromophores for photorefractive applications,” J. Opt. Soc. Am. B 15, 929–932 (1998).
  29. C. Chen and S. Chi, “Subwavelength spatial solitons of TE mode,” Opt. Commun. 157, 170–172 (1998).
  30. J. A. Herlocker, K. B. Ferrio, E. Hendrickx, B. D. Guenther, S. Mery, B. Kippelen, and N. Peyghambarian, “Direct observation of orientation limit in a fast photorefractive polymer composite,” Appl. Phys. Lett. 74, 2253–2255 (1999).
  31. D. Wright, M. A. Diaz-Garcia, J. D. Casperson, M. DeClue, W. E. Moerner, and R. J. Twieg, “High-speed photorefractive polymer composites,” Appl. Phys. Lett. 73, 1490–1492 (1998).
  32. K. S. West, D. P. West, M. D. Rahn, J. D. Shakos, F. A. Wade, K. Khand, and T. A. King, “Photorefractive polymer composite trapping properties and a link with chromophore structure,” J. Appl. Phys. 84, 5893–5899 (1998).
  33. K. D. Singer, J. E. Sohn, and S. J. Lalama, “Second harmonic generation in poled polymer films,” Appl. Phys. Lett. 49, 248–250 (1986).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited