OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 18, Iss. 7 — Jul. 1, 2001
  • pp: 908–912

Absorption and scattering in low-loss polymer optical waveguides

Claire Pitois, Anders Hult, and Dorothea Wiesmann  »View Author Affiliations

JOSA B, Vol. 18, Issue 7, pp. 908-912 (2001)

View Full Text Article

Enhanced HTML    Acrobat PDF (144 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The absolute absorption spectra of low-loss optical waveguides, together with their intrinsic and extrinsic scatterings, were measured in the near infrared. Photothermal deflection spectroscopy was used to measure the full absorption spectra of a series of fluorinated cross-linked polymers. Assignment of CH3,CH2, and —OH overtones as well as of combinations of overtones were made by use of the theory of anharmonic vibrations based on a Morse potential for local modes. Details of the molecular potential are given. The total attenuation in slab waveguides made with these polymers was measured by a prism-coupling technique and compared with the absolute absorption. Losses that are due to the material itself and those that are due to the processing are quantified.

© 2001 Optical Society of America

OCIS Codes
(060.4510) Fiber optics and optical communications : Optical communications
(160.5470) Materials : Polymers
(250.5460) Optoelectronics : Polymer waveguides
(290.0290) Scattering : Scattering
(300.1030) Spectroscopy : Absorption

Claire Pitois, Anders Hult, and Dorothea Wiesmann, "Absorption and scattering in low-loss polymer optical waveguides," J. Opt. Soc. Am. B 18, 908-912 (2001)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Q. Pei, G. Yu, C. Zhang, Y. Yang, and A. J. Heeger, “Polymer light-emitting electrochemical cells,” Science 269, 1086–1088 (1995). [CrossRef] [PubMed]
  2. A. J. Heeger, “Light emission from semiconducting polymers: light-emitting diodes, light-emitting electrochemical cells, lasers and white light for the future,” Solid State Commun. 107, 673–679 (1998). [CrossRef]
  3. P. N. Prasad and D. J. Williams, in Introduction to Nonlinear Optical Effects in Molecules and Polymers, P. N. Prasad and N. Paras, eds. (Wiley, New York, 1991), Chaps. 7–10, pp. 132–252.
  4. T. Kaino and S. Tomaru, “Organic materials for nonlinear optics,” Adv. Mater. 5, 172–178 (1993). [CrossRef]
  5. D. M. Burland, R. D. Miller, and C. A. Walsh, “Second-order nonlinearity in poled-polymer systems,” Chem. Rev. 94, 31–75 (1994). [CrossRef]
  6. H. S. Nalwa, T. Watanabe, and S. Miyata, in Nonlinear Optics of Organic Molecules and Polymers, H. S. Nalwa and S. Miyata, eds. (CRC Press, Boca Raton, Fla., 1997), Chap. 4, pp. 89–350.
  7. F. Kremer, “Ferroelectric liquid crystalline polymers,” Polym. Adv. Technol. 3, 195 (1992). [CrossRef]
  8. C. Koeppen, S. Yamada, G. Jiang, A. F. Garito, and L. R. Dalton, “Rare-earth organic complexes for amplification in polymer optical fibers and waveguides,” J. Opt. Soc. Am. B 14, 155–162 (1997). [CrossRef]
  9. A. Adronov, S. L. Gilat, J. M. J. Fréchet, K. Ohta, F. V. R. Neuwahl, and G. R. Fleming, “Light harvesting and energy transfer in laser-dye labeled poly(aryl ether) dendrimers,” J. Am. Chem. Soc. 122, 1175–1185 (2000). [CrossRef]
  10. T. Kaino, “Plastic optical fibers for near-infrared transmission,” Appl. Phys. Lett. 48, 757–758 (1986). [CrossRef]
  11. N. Taino and Y. Koike, “What is the most transparent polymer?” Polym. J. (Tokyo) 32, 43–50 (2000). [CrossRef]
  12. B. L. Booth, in Polymers for Lightwave and Integrated Optics: Technology and Applications, L. A. Hornak, ed. (Marcel Dekker, New York, 1992), pp. 231–266.
  13. D. H. Hartman, in Polymers for Lightwave and Integrated Optics: Technology and Applications, L. A. Hornak, ed. (Marcel Dekker, New York, 1982), pp. 267–286.
  14. C. Pitois, S. Vukmirovic, D. Wiesmann, M. Robertsson, and A. Hult, “Low-loss passive optical waveguides based on photosensitive poly(pentafluorostyrene-co-glycidyl methacrylate),” Macromolecules 32, 2903–2909 (1999). [CrossRef]
  15. M. Hikita, S. Tomaru, K. Enbutsu, N. Ooba, R. Yoshimura, M. Usui, T. Yoshida, and S. Imamura, “Polymeric optical waveguide films for short-distance optical interconnects,” IEEE J. Sel. Top. Quantum Electron. 5, 1237–1242 (1999). [CrossRef]
  16. L. Eldada, R. Blomquist, L. W. Shacklette, and M. J. McFarland, “High-performance polymeric componentry for telecom and datacom applications,” Opt. Eng. 39, 596–609 (2000). [CrossRef]
  17. A. C. Boccara, D. Fournier, and J. Badoz, “Thermo-optical spectroscopy: detection by the ‘mirage effect, ’ ” Appl. Phys. Lett. 36, 130–132 (1980). [CrossRef]
  18. W. B. Jackson, N. M. Amer, A. C. Boccara, and D. Fournier, “Photothermal deflection spectroscopy and detection,” Appl. Opt. 20, 1333–1344 (1981). [CrossRef] [PubMed]
  19. N. M. Amer and W. B. Jackson, “Optical properties of defect states in a-Si:H,” Semicond. Semimet. B 21, 83–112 (1984). [CrossRef]
  20. A. Skumanich, “Highly sensitive absorption measurements in organic thin films and optical media,” in Photopolymer Device Physics, Chemistry, and Applications II, R. Lessard, ed., Proc. SPIE 1559, 267–277 (1991).
  21. C. H. Seager, M. Sinclair, D. McBranch, A. J. Heeger, and G. L. Baker, “Photothermal deflection spectroscopy of conjugated polymers,” Synth. Met. 49–50, 91–97 (1992). [CrossRef]
  22. A. Skumanich, M. Jurich, and J. D. Swalen, “Absorption and scattering in nonlinear optical polymeric systems,” Appl. Phys. Lett. 62, 446–448 (1993). [CrossRef]
  23. T. C. Kowalczyk, T. Z. Kosc, K. D. Singer, A. J. Beuhler, D. A. Wargowski, P. A. Cahill, C. H. Seager, M. B. Meinhardt, and S. Ermer, “Crosslinked polyimide electro-optic materials,” J. Appl. Phys. 78, 5876–5883 (1995). [CrossRef]
  24. H. Einsiedel and S. Mittler-Neher, “Photothermal beam deflection techniques: useful tools for integrated optics,” Opt. Appl. 26, 347–357 (1996).
  25. R. Barto, C. W. Frank, P. V. Bedworth, and A. S. Ren, “Weak optical absorption measurements in attached-dye electro-optical polymers by photothermal deflection spectroscopy,” Polym. Prepr. Am. Chem. Soc. Div. Polym. Chem. 41, 844–845 (2000).
  26. A. Skumanich and J. C. Scott, “Photothermal deflection spectroscopy: a sensitive absorption technique for organic thin films,” Mol. Cryst. Liq. Cryst. 183, 365–370 (1990).
  27. P. K. Tien, R. Ulrich, and R. J. Martin, “Modes of propagating light waves in thin deposited semiconductor films,” Appl. Phys. Lett. 14, 291–294 (1969). [CrossRef]
  28. G. H. Beaven, E. A. Johnson, H. A. Willis, and R. G. J. Miller, in Molecular Spectroscopy, Methods and Applications in Chemistry, Macmillan, ed. (Heywood, London, 1961), pp. 170–173, and references therein.
  29. W. Groh, “Overtone absorption in macromolecules for polymer optical fibers,” Makromol. Chem. 189, 2861–2874 (1988), and references therein. [CrossRef]
  30. M. Towland, A. M. North, and R. A. Pethrick, “Infrared and Raman studies of partially fluorinated polystyrene,” Spectrochim. Acta 33A, 723–724 (1977). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited