OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 18, Iss. 8 — Aug. 1, 2001
  • pp: 1057–1062

Electromagnetically induced transparency in cold rubidium atoms

Min Yan, Edward G. Rickey, and Yifu Zhu  »View Author Affiliations

JOSA B, Vol. 18, Issue 8, pp. 1057-1062 (2001)

View Full Text Article

Acrobat PDF (166 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report experimental studies of electromagnetically induced transparency in Λ-type and ladder-type atomic systems realized in <sup>87</sup>Rb atoms cooled and confined in a magneto-optical trap. Complete transparency is observed in the Λ-type system with a moderate coupling field. Comparison between the two systems reveals that at the line center of a weak probe transition, destructive interference occurs for the Λ-type system, whereas constructive interference occurs for the ladder-type system. We discuss conditions of complete transparency in the Λ-type system that contains hyperfine magnetic sublevels. Our experimental measurements for the two systems agree with theoretical calculations based on simple three-level Λ-type and ladder-type models.

© 2001 Optical Society of America

OCIS Codes
(020.1670) Atomic and molecular physics : Coherent optical effects
(030.1640) Coherence and statistical optics : Coherence
(270.1670) Quantum optics : Coherent optical effects

Min Yan, Edward G. Rickey, and Yifu Zhu, "Electromagnetically induced transparency in cold rubidium atoms," J. Opt. Soc. Am. B 18, 1057-1062 (2001)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. S. E. Harris, “Electromagnetically induced transparency,” Phys. Today 50, 36–42 (1997), and references therein.
  2. E. Arimondo, in Progress in Optics, E. Wolf, ed. (Elsevier, Amsterdam, 1996), pp. 257–354, and references therein.
  3. K. J. Boller, A. Imamoglu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66, 2593–2596 (1991).
  4. J. Gea-Banacloche, Y. Li, S. Jin, and M. Xiao, “Electromagnetically induced transparency in ladder-type inhomogeneously broadened medium: theory and experiment,” Phys. Rev. A 51, 576–584 (1995).
  5. D. J. Fulton, S. Shepherd, R. R. Moseley, B. D. Sinclair, and M. H. Dunn, “Continuous-wave electromagnetically in-duced transparency: a comparison of V, Λ, and cascade systems,” Phys. Rev. A 52, 2302–2311 (1995).
  6. O. Schmidt, R. Wynands, Z. Hussein, and D. Meschede, “Steep dispersion and group velocity below c/3000 in coherent population trapping,” Phys. Rev. A 53, R27–R30 (1996).
  7. O. Kocharovskaya, “Amplification and lasing without inversion,” Phys. Rep. 219, 175–190 (1992).
  8. M. O. Scully, “From lasers and masers to phaseonium and phasers,” Phys. Rep. 219, 191–201 (1992).
  9. M. O. Scully and M. Fleischhauer, “Lasers without inversion,” Science 263, 337–338 (1994).
  10. S. E. Harris and L. V. Hau, “Nonlinear optics at low light levels,” Phys. Rev. Lett. 82, 4611–4614 (1999).
  11. L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature (London) 397, 594–598 (1997).
  12. T. Van Der Veldt, J. F. Roch, and Ph. Grangier, “Nonlinear absorption and dispersion in cold 87Rb atoms,” Opt. Commun. 137, 420–426 (1997).
  13. S. A. Hopkins, E. Usadi, H. X. Chen, and A. V. Durrant, “Electromagnetically induced transparency of laser-cooled rubidium atoms in three-level lambda-type systems,” Opt. Commun. 138, 185–192 (1997).
  14. F. S. Cataliotti, C. Fort, T. W. Hansch, M. Inguscio, and M. Prevedelli, “Electromagnetically induced transparency in cold free atoms: test of a sum rule for nonlinear optics,” Phys. Rev. A 56, 2221–2224 (1997).
  15. A. V. Durrant, H. X. Chen, S. A. Hopkins, and J. A. Vaccaro, “Zeeman-coherence-induced transparency and gain without inversion in laser-cooled rubidium,” Opt. Commun. 151, 136–146 (1998).
  16. H. X. Chen, A. V. Durrant, J. P. Marangos, and J. A. Vaccaro, “Observation of transient electromagnetically induced transparency in a rubidium lambda system,” Phys. Rev. A 58, 1545–1548 (1998).
  17. Y. Chen, C. Lin, and I. A. Yu, “Role of degenerate Zeeman levels in electromagnetically induced transparency,” Phys. Rev. A 61, 053805 (2000).
  18. C. Cohen-Tannoudji, in Frontiers in Laser Spectroscopy, Les Houches Session XXVII, R. Balian, S. Haroche, and S. Liberman, eds. (North-Holland, Amsterdam, 1977), pp. 1–104.
  19. T. Hansch, R. Keil, A. Schabert, C. Schemelzer, and P. Toscheck, “Interaction of laser light waves by dynamic Stark splitting,” Z. Phys. 226, 293–296 (1969).
  20. P. Meystre and M. Sargent III, Elements of Quantum Optics (Springer-Verlag, New York, 1990).
  21. G. G. Padmabandu, G. R. Welch, Z. N. Smith, E. S. Fry, D. E. Nikonov, M. D. Lukin, and M. O. Scully, “Laser oscillation without population inversion in a sodium atomic beam,” Phys. Rev. Lett. 76, 2053–2054 (1996).
  22. J. Kitching and L. Hollberg, “Interference-induced optical gain without inversion in cold, trapped atoms,” Phys. Rev. A 59, 4685–4689 (1999).
  23. K. Lindquist, M. Stephens, and C. Wieman, “Experimental and theoretical study of the vapor-cell Zeeman optical trap,” Phys. Rev. A 46, 4082–4090 (1992).
  24. W. Ketterle, K. B. Davis, M. A. Joffe, A. Martin, and D. E. Pritchard, “High densities of cold atoms in a dark spontaneous force,” Phys. Rev. Lett. 70, 2253–2254 (1993).
  25. S. E. Harris and Y. Yamamoto, “Photon switching by quantum interference,” Phys. Rev. Lett. 81, 3611–3614 (1998).
  26. M. Yan, E. Rickey, and Y. Zhu, “Nonlinear absorption by quantum interference in cold atoms,” Opt. Lett. 26, 548–550 (2001).
  27. H. Schmidt and A. Imamoglu, “Giant Kerr nonlinearities obtained by electromagnetically induced transparency,” Opt. Lett. 21, 1936–1938 (1996).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited