OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 18, Iss. 8 — Aug. 1, 2001
  • pp: 1092–1098

Magnitude and nature of the quadratic electro-optic effect in potassium dihydrogen phosphate and ammonium dihydrogen phosphate crystals

Mark J. Gunning, Roger E. Raab, and Włodimierz Kucharczyk  »View Author Affiliations


JOSA B, Vol. 18, Issue 8, pp. 1092-1098 (2001)
http://dx.doi.org/10.1364/JOSAB.18.001092


View Full Text Article

Acrobat PDF (165 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Measurements of the magnitude and the sign of certain quadratic electro-optic coefficients of potassium dihydrogen phosphate (KDP) and ammonium dihydrogen phosphate (ADP) were made with an actively stabilized Michelson interferometer. The results obtained for these coefficients are, in units of 10−20 m2 V−2 (as opposed to literature values of order 10−18 m2 V−2), as follows: (KDP)gxxxx=−3.4±0.5,  gyyxx=−0.2±0.4, and gzzxx=−0.7±0.4; (ADP)gxxxx=−7.4±1.0,  gyyxx=−1.7±0.9, and gzzxx=−1.4±0.9. The quadratic Faust–Henry coefficient describing the lattice and the electronic contributions to the quadratic electro-optic effect in KDP and ADP is estimated from our results. These show that the nonlinear susceptibility responsible for the quadratic electro-optic effect in these crystals is due mainly to nonlinear interactions of the low-frequency electric field with the crystal lattice.

© 2001 Optical Society of America

OCIS Codes
(160.2100) Materials : Electro-optical materials
(160.4760) Materials : Optical properties
(190.0190) Nonlinear optics : Nonlinear optics
(190.3270) Nonlinear optics : Kerr effect
(190.4720) Nonlinear optics : Optical nonlinearities of condensed matter
(260.1180) Physical optics : Crystal optics

Citation
Mark J. Gunning, Roger E. Raab, and Włodimierz Kucharczyk, "Magnitude and nature of the quadratic electro-optic effect in potassium dihydrogen phosphate and ammonium dihydrogen phosphate crystals," J. Opt. Soc. Am. B 18, 1092-1098 (2001)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-18-8-1092


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. P. Górski, D. Mik, W. Kucharczyk, and R. E. Raab, “On the quadratic electro-optic effect in KDP,” Physica B 193, 17–24 (1994).
  2. B. H. Billings, “The electro-optic effect in uniaxial crystals of the type XH2PO4. I. Theoretical,” J. Opt. Soc. Am. 39, 797–801 (1949).
  3. K.-H. Hellwege and A. M. Hellwege, eds., Numerical Data and Functional Relationships in Science and Technology, Vol. 11 of Landolt-Börnstein, New Series, Group III (Springer, Berlin, 1979); see also Vol. 18 (1984).
  4. M. J. Gunning, R. Ledzion, P. Górski, and W. Kucharczyk, “Studies of the quadratic electro-optic effect in KDP-type crystals,” in International Conference on Solid State Crystals ’98: Single Crystal Growth, Characterization, and Applications, A. Majchrowski and J. Zielinski, eds., Proc. SPIE 3724, 249–255 (1999).
  5. V. E. Perfilova and A. S. Sonin, “Quadratic electrooptic effect in KDP group crystals,” Izv. Akad. Nauk SSSR, Ser. Fiz. 31, 1136–1138 (1967) [Bull. Acad. Sci. USSR, Phys. Ser. (Engl. Transl.) 31, 1154–1157 (1967)].
  6. P. Górski and W. Kucharczyk, “The quadratic electrooptic effect in KDP and ADP crystals,” Phys. Status Solidi A 103, K65–K67 (1987).
  7. W. Kucharczyk, M. J. Gunning, R. E. Raab, and C. Graham, “Interferometric investigation of the quadratic electro-optic effect in KDP,” Physica B 212, 5–9 (1995).
  8. B. N. Grib, I. I. Kondilenko, and P. A. Korotkov, “Electrooptical deflection from potassium dihydrogen phosphate crystals and its use in frequency reforming in a neodymium laser,” Zh. Prikl. Spektrosk. 23, 804–810 (1975) [J. Appl. Spectrosc. 23, 1449–1455 (1975)].
  9. W. Jamroz, J. Karniewicz, and J. Stachowiak, “Nonlinear electrooptic effects in KDP and DKDP crystals,” Kvantovaya Elektron. 6, 1365–1369 (1979) [Sov. J. Quantum Electron. 6, 803–805 (1979)].
  10. W. Jamroz and J. Karniewicz, “The electro-optic Kerr effect in noncentrosymmetric KH2PO4 and KD2PO4 monocrystals,” Opt. Quantum Electron. 11, 23–27 (1979).
  11. M. J. Gunning, R. E. Raab, P. Górski, and W. Kucharczyk, “The quadratic electrooptic effect and estimation of antipolarization in ADP,” Ferroelectr. Lett. Sect. 24, 63–68 (1998).
  12. R. Ledzion, K. Bondarczuk, P. Górski, and W. Kucharczyk, “Effect of deuteration on the quadratic electrooptic properties of KDP,” Cryst. Res. Technol. 34, 745–749 (1999).
  13. A. Yariv and P. Yeh, Optical Waves in Crystals (Wiley, New York, 1984).
  14. K. Hruška, “Measurement of electrostriction coefficients of crystals of ammonium dihydrogen phosphate (ADP),” Kristallografiya 10, 428–429 (1965) [Sov. Phys. Crystallogr. 10, 351–352 (1965)].
  15. M. P. Zaitseva and A. A. Fotchenkov, “Experimental determination of some electrostriction coefficients for ammonium dihydrogen phosphate,” Kristallografiya 12, 716–717 (1967) (in Russian).
  16. A. M. Sysoev, “Electrostriction, and dielectric and piezoelectric nonlinearity of a KDP crystal,” Fiz. Tverd. Tela (Leningrad) 34, 2874–2881 (1992) [Sov. Phys. Solid State 34, 1538–1542 (1992)].
  17. M. L. N. Madhu Mohan and C. Haranadh, “The measurement of electrostriction coefficients of some XH2PO4/H3BO3 binaries by interferometric technique,” Bull. Mater. Sci. 18, 599–602 (1995).
  18. M. J. Gunning, “Some experimental and theoretical studies in crystal optics,” Ph.D. dissertation (University of Natal, Scottsville, South Africa, 1999).
  19. M. J. Gunning, R. E. Raab, and W. Kucharczyk, “Interfero-metric measurements of electrostrictive coefficients of KDP and ADP in transmission,” Ferroelectr. Lett. Sect. 28, 93–102 (2001).
  20. M. Born and E. Wolf, Principles of Optics, 6th ed. (Pergamon, New York, 1980).
  21. M. J. Gunning and R. E. Raab, “Systematic eigenvalue approach to crystal optics: an analytic alternative to the geometric ellipsoid model,” J. Opt. Soc. Am. A 15, 2199–2207 (1998).
  22. G. W. C. Kaye and T. H. Laby, Tables of Physical and Chemical Constants, 15th ed. (Longman, New York, 1986).
  23. A. D. Buckingham, M. D. Bogaard, D. A. Dunmur, C. P. Hobbs, and B. J. Orr, “Kerr effect in some simple non-dipolar gases,” Trans. Faraday Soc. 66, 1548–1553 (1970).
  24. R. Ledzion, K. Bondarczuk, P. Górski, and W. Kucharczyk, “Kerr constants of some mineral and silicone oils,” Kvant. Elektron. (Moscow) 28, 183–185 (1999) [Quantum Electron. 29, 739–741 (1999)].
  25. S. Haussühl and G. Walda, “Measurement of the absolute quadratic electro-optical effects in crystals. Example LiF and alpha-TlAl(SO4)2.12H2O,” Phys. Status Solidi A 5, K163–K165 (1971) (in German).
  26. L. Bohatý, “Dynamic method for measurement of electrostrictive and electrooptical effects. Tincalconite, Na2B4O5(OH)4.3H2O,” Z. Kristallogr. 158, 233–239 (1982) (in German).
  27. S. W. P. van Sterkenburg, “Measurement of the electrostrictive tensor of eight alkali halides,” J. Phys. D 24, 1853–1857 (1991).
  28. Q. M. Zhang, W. Y. Pan, and L. E. Cross, “Laser interferometer for the study of piezoelectric and electrostrictive strains,” J. Appl. Phys. 63, 2492–2496 (1988).
  29. G. C. Ghosh and G. C. Bhar, “Temperature dispersion in ADP, KDP, and KD*P for nonlinear devices,” IEEE J. Quantum Electron. QE-18, 143–145 (1982).
  30. G. Kloos, “Correction of low-frequency measurements of the quadratic electro-optic effect for electrostatic stresses,” Appl. Opt. 35, 5398–5401 (1996).
  31. J. Schreuer and S. Haussühl, “A re-investigation of the quadratic electrostriction of alkali halides of rocksalt type,” J. Phys. D 32, 1263–1270 (1999).
  32. E. Burnstein, A. A. Maradudin, E. Anastassakis, and A. Pinczuk, “Electric field induced infrared absorption and Raman scattering by optical phonons in centrosymmetric crystals,” Helv. Phys. Acta 41, 730–740 (1968).
  33. G. D. Mahan and K. R. Subbaswamy, “Electro-optic contribution to Raman scattering from alkali halides,” Phys. Rev. B 33, 8657–8663 (1986).
  34. H. Vogt and H. Presting, “Hyper-Raman scattering from alkali halides,” Phys. Rev. B 31, 6731–6738 (1985).
  35. W. L. Faust and C. H. Henry, “Mixing of visible and near-resonance infrared light in GaP,” Phys. Rev. Lett. 17, 1265–1268 (1966).
  36. P. Górski, M. Kin, and W. Kucharczyk, “On the application of a generalized form of Miller’s δ coefficient to nonlinear refractive indices in partially ionic crystals,” J. Phys. D 30, 1111–1114 (1997).
  37. R. Adair, L. L. Chase, and S. A. Payne, “Nonlinear refractive index of optical crystals,” Phys. Rev. B 39, 3337–3350 (1989).
  38. I. Shoji, T. Kondo, A. Kitamoto, M. Shirane, and R. Ito, “Absolute scale of second-order nonlinear-optical coefficients,” J. Opt. Soc. Am. B 14, 2268–2294 (1997).
  39. M. Izdebski, W. Kucharczyk, and R. E. Raab, “Effect of beam divergence from the optic axis in an electro-optic experiment to measure an induced Jones birefringence,” J. Opt. Soc. Am. A 18, 1393–1398 (2001).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited