OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 18, Iss. 8 — Aug. 1, 2001
  • pp: 1144–1149

Influence of two-photon absorption on modulational instability

E. N. Tsoy, C. M. de Sterke, and F. Kh. Abdullaev  »View Author Affiliations

JOSA B, Vol. 18, Issue 8, pp. 1144-1149 (2001)

View Full Text Article

Enhanced HTML    Acrobat PDF (213 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The instability of a plane wave in an optical medium with two-photon absorption is studied. The analysis is based on the modified nonlinear Schrödinger equation. The linearized equation for the modulation is shown to have an exact solution in terms of confluent hypergeometric functions. It is found that the gain spectrum varies with position. This may result in a change of the wave dynamics and in a decrease of the repetition rate of the pulse train developed from the plane wave. The application of the results to the optical pulse propagation in semiconductor gratings and fiber gratings is discussed.

© 2001 Optical Society of America

OCIS Codes
(050.2770) Diffraction and gratings : Gratings
(190.0190) Nonlinear optics : Nonlinear optics
(190.3100) Nonlinear optics : Instabilities and chaos

E. N. Tsoy, C. M. de Sterke, and F. Kh. Abdullaev, "Influence of two-photon absorption on modulational instability," J. Opt. Soc. Am. B 18, 1144-1149 (2001)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. V. I. Bespalov and V. I. Talanov, “Filamentary structure of light beams in nonlinear liquids,” JETP 3, 307–310 (1966).
  2. T. B. Benjamin and J. E. Feir, “The disintegration of wave trains on deep water,” J. Fluid Mech. 27, 410–430 (1967). [CrossRef]
  3. G. P. Agrawal, Nonlinear Fiber Optics (Academic, San Diego, Calif., 1995).
  4. D. Anderson and M. Lisak, “Modulational instability of coherent optical-fiber transmission signals,” Opt. Lett. 9, 468–470 (1984). [CrossRef] [PubMed]
  5. A. Hasegawa and K. Tai, “Effects of modulational instability on coherent transmission systems,” Opt. Lett. 14, 512–513 (1989). [CrossRef] [PubMed]
  6. M. Karlsson, “Modulational instability in lossy optical fibers,” J. Opt. Soc. Am. B 12, 2071–2077 (1995).
  7. V. A. Vysloukh and N. A. Sukhostova, “Influence of third-order dispersion on the generation of a train of picosecond pulses in fiber waveguides due to self-modulation instability,” Sov. J. Quantum Electron. 17, 1509–1511 (1987). [CrossRef]
  8. F. Kh. Abdullaev, S. A. Darmanyan, S. Bishoff, P. L. Christiansen, and M. P. Sørensen, “Modulational instability in optical fibers near the zero dispersion point,” Opt. Commun. 108, 60–64 (1994). [CrossRef]
  9. K. J. Blow and D. Wood, “Theoretical description of transient stimulated Raman scattering in optical fibers,” IEEE J. Quantum Electron. 25, 2665–2673 (1989). [CrossRef]
  10. F. Kh. Abdullaev, S. A. Darmanyan, A. Kobyakov, and F. Lederer, “Modulational instability in optical fibers with variable dispersion,” Phys. Lett. A 220, 213–218 (1996). [CrossRef]
  11. F. Kh. Abdullaev, S. A. Darmanyan, S. Bischoff, and M. P. Sørensen, “Modulational instability of electromagnetic waves in media with varying nonlinearity,” J. Opt. Soc. Am. B 14, 27–33 (1997). [CrossRef]
  12. F. T. Gratton, G. Gnavi, R. M. O. Galvao, and L. Gomberoff, “Self-modulation of a strong electromagnetic wave in a positron–electron plasma induced by relativistic temperatures and phonon damping,” Phys. Rev. E 55, 3381–3392 (1997). [CrossRef]
  13. P. Millar, R. M. De La Rue, T. F. Krauss, J. S. Aitchison, N. G. R. Broderick, and D. J. Richardson, “Nonlinear propagation effects in AlGaAs Bragg grating filter,” Opt. Lett. 24, 685–687 (1999). [CrossRef]
  14. B. J. Eggleton, R. E. Slusher, C. M. de Sterke, P. A. Krug, and J. E. Sipe, “Bragg grating solitons,” Phys. Rev. Lett. 76, 1627–1630 (1996). [CrossRef] [PubMed]
  15. C. M. de Sterke and J. E. Sipe, “Gap solitons,” in Progress in Optics XXXIII, E. Wolf, ed. (Elsevier, Amsterdam, 1994), Chap. 3, pp. 203–260.
  16. Y. Silberberg, “Solitons and two-photon absorption,” Opt. Lett. 15, 1005–1007 (1990). [CrossRef] [PubMed]
  17. V. V. Afanasjev, J. S. Aitchison, and Y. S. Kivshar, “Splitting of high-order spatial solitons under the action of two-photon absorption,” Opt. Commun. 116, 331–338 (1995). [CrossRef]
  18. V. Mizrahi, K. W. DeLong, G. I. Stegeman, M. I. Saifi, and M. J. Andrejco, “Two-photon absorption as a limitation to all-optical switching,” Opt. Lett. 14, 1140–1142 (1989). [CrossRef] [PubMed]
  19. M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions (Wiley, New York, 1972).
  20. L. J. Slater, Confluent Hypergeometric Functions (Cambridge University, London, 1960).
  21. J. S. Aitchison, D. C. Hutchings, J. U. Kang, G. I. Stegeman, and A. Villeneuve, “The nonlinear properties of AlGaAs at the half band gap,” IEEE J. Quantum Electron. 33, 341–348 (1997). [CrossRef]
  22. B. J. Eggleton, C. M. de Sterke, A. B. Acevez, J. E. Sipe, T. A. Strasser, and R. E. Slusher, “Modulational instability and tunable multiple soliton generation in apodized fiber gratings,” Opt. Commun. 149, 267–271 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited