OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 18, Iss. 9 — Sep. 1, 2001
  • pp: 1307–1310

Refractive-index measurements and Sellmeier coefficients for zinc germanium phosphide from 2 to 9 µm with implications for phase matching in optical frequency-conversion devices

David E. Zelmon, Elizabeth A. Hanning, and Peter G. Schunemann  »View Author Affiliations


JOSA B, Vol. 18, Issue 9, pp. 1307-1310 (2001)
http://dx.doi.org/10.1364/JOSAB.18.001307


View Full Text Article

Enhanced HTML    Acrobat PDF (127 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Recent experiments in mid-IR frequency conversion reveal that older Sellmeier models for zinc germanium phosphide are inadequate for predicting phase-matching loci in zinc germanium phosphide optical frequency-conversion devices. This results in compromised device performance. We conduct a complete study of the refractive indices of zinc germanium phosphide from 2 to 9 µm and calculate new Sellmeier coefficients. The phase-matching calculations based on our new refractive-index data predict much more closely the results of several different mid-IR frequency-conversion experiments.

© 2001 Optical Society of America

OCIS Codes
(160.4670) Materials : Optical materials
(160.4760) Materials : Optical properties
(190.2620) Nonlinear optics : Harmonic generation and mixing
(190.4400) Nonlinear optics : Nonlinear optics, materials
(190.4970) Nonlinear optics : Parametric oscillators and amplifiers

Citation
David E. Zelmon, Elizabeth A. Hanning, and Peter G. Schunemann, "Refractive-index measurements and Sellmeier coefficients for zinc germanium phosphide from 2 to 9 µm with implications for phase matching in optical frequency-conversion devices," J. Opt. Soc. Am. B 18, 1307-1310 (2001)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-18-9-1307


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. N. P. Barnes, K. E. Murray, M. G. Jani, P. G. Schunemann, and T. M. Pollak, “ZnGeP2 parametric amplifier,” J. Opt. Soc. Am. B 15, 232–238 (1998). [CrossRef]
  2. P. A. Budni, K. Ezzo, P. G. Schunemann, M. G. Knights, S. Minnigh, J. C. McCarthy, and T. M. Pollak, “2.8 micron pumped optical parametric oscillation in ZnGeP2,” in Advanced Solid State Lasers, G. Dube and L. Chase, eds., Vol. 10 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1991), pp. 335–338.
  3. T. H. Allik, S. Chandra, P. G. Schunemann, P. A. Ketteridge, I. Lee, T. M. Pollak, and E. P. Chicklis, “3.5 micron pumped NCPM ZnGeP2 OPO,” in Advanced Solid State Lasers, W. R. Bosenburg and M. M. Fejer, eds., Vol. 19 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington D.C., 1998), pp. 230–232.
  4. F. K. Hopkins, “Nonlinear materials extend the range of high power lasers,” Laser Focus World 31(7), 87–93 (1995).
  5. A. J. LaRocca, “Atmospheric absorption,” in The Infrared Handbook, W. L. Wolfe and G. J. Zissis, eds. (Office of Naval Research, Washington, D.C., 1978), Chap. 5.
  6. P. G. Schunemann, “Nonlinear crystals provide high power for the mid-IR,” Laser Focus World 35(4), 85–90 (1999).
  7. M. Born and E. Wolf, Principles of Optics, 6th ed. (Pergamon, New York, 1980), p. 179.
  8. I. Malitson, “A redeterminaion of some optical properties of calcium fluoride,” Appl. Opt. 2, 1103–1107 (1963). [CrossRef]
  9. G. D. Boyd, E. Buehler, and F. G. Storz, “Linear and nonlinear optical properties of ZnGeP2,” Appl. Phys. Lett. 18, 301–304 (1971). [CrossRef]
  10. G. C. Bhar and G. Ghosh, “Temperature-dependent Sellmeier coefficients and coherence lengths for some chalcopyrite crystals,” J. Opt. Soc. Am. 69, 730–733 (1979). [CrossRef]
  11. Y. M. Andreev, V. G. Voevodin, A. I. Gribenyukov, O. Ya. Zyranov, I. I. Ippolitov, A. N. Morozov, A. V. Sosnin, and G. S. Khemi’nitskii, “Efficient generation of the second harmonic of tunable CO2 laser radiation,” Sov. J. Quantum Electron. 14, 1021–1022 (1984). [CrossRef]
  12. Y. M. Andreev, An. N. Bykanov, A. I. Gribenyukov, V. V. Zuev, V. D. Karyshev, A. V. Lisletsov, I. O. Kovalev, V. I. Konov, G. P. Kuz’min, A. A. Nesterenko, A. E. Osorgin, Yu. M. Stardumov, and N. I. Chapliev, “Conversion of pulsed laser radiation from the 9.3–9.6 mm range to the second harmonic in ZnGeP2 crystals,” Sov. J. Quantum Electron. 20, 410–414 (1990). [CrossRef]
  13. G. B. Abdullaev, K. R. Allakhverdiev, M. E. Karasev, V. I. Konov, L. A. Kulevskii, N. B. Mustafaev, P. P. Pashinin, A. M. Prokhorov, Yu. M. Starodumov, and N. I. Chapliev, “Efficient generation of the second harmonic of CO2 laser radiation in a GaSe crystal,” Sov. J. Quantum Electron. 19, 494–498 (1989). [CrossRef]
  14. K. Kato, “Second harmonic and sum frequency generation in ZnGeP2,” Appl. Opt. 36, 2506–2530 (1997). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited