OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 19, Iss. 1 — Jan. 1, 2002
  • pp: 142–147

Gain effects on microsphere resonant emission structures

Vitaly V. Datsyuk  »View Author Affiliations

JOSA B, Vol. 19, Issue 1, pp. 142-147 (2002)

View Full Text Article

Acrobat PDF (159 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The effects of light absorption and amplification on the transition rates of the electric-dipole emission of atoms or molecules embedded in micrometer-sized dielectric spheres are investigated in the framework of classical electrodynamics. The expression for the form factor of a resonant emission line is derived. Its dependence on the imaginary part of the light’s refractive index is investigated. It is discovered that the active sphere does not act as an optical resonator if light amplification is strong.

© 2002 Optical Society of America

OCIS Codes
(190.3970) Nonlinear optics : Microparticle nonlinear optics
(260.2110) Physical optics : Electromagnetic optics
(260.2510) Physical optics : Fluorescence
(260.5740) Physical optics : Resonance
(290.5850) Scattering : Scattering, particles
(300.6280) Spectroscopy : Spectroscopy, fluorescence and luminescence

Vitaly V. Datsyuk, "Gain effects on microsphere resonant emission structures," J. Opt. Soc. Am. B 19, 142-147 (2002)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. S.-X. Qian, J. B. Snow, H.-M. Tzeng, and R. K. Chang, “Lasing droplets: highlighting the liquid–air interface by laser emission,” Science 231, 486–488 (1986).
  2. W.-F. Hsieh, H.-M. Tzeng, and R. K. Chang, “High intensity laser interactions with micrometer size dye droplets,” Acad. Sin. 16, 1–8 (1986).
  3. S. C. Hill and R. E. Benner, “Morphology-dependent resonances associated with stimulated processes in microdroplets,” J. Opt. Soc. Am. B 3, 1509–1514 (1986).
  4. A. Serpengüzel, J. C. Swindal, R. K. Chang, and W. P. Acker, “Two-dimensional imaging of sprays with fluorescence, lasing, and stimulated Raman scattering,” Appl. Opt. 31, 3543–3551 (1992).
  5. A. J. Campillo, J. D. Eversole, and H.-B. Lin, “Cavity quantum electrodynamic enhancement of stimulated emission in microdroplets,” Phys. Rev. Lett. 67, 437–440 (1991).
  6. A. J. Campillo, J. D. Eversole, and H.-B. Lin, “Cavity quantum electrodynamic enhancement of spontaneous and stimulated emission in microdroplets,” Mod. Phys. Lett. B 6, 447–457 (1992).
  7. S. C. Ching, H. M. Lai, and K. Young, “Dielectric microspheres as optical cavities: thermal spectrum and density of states,” J. Opt. Soc. Am. B 4, 1995–2003 (1987).
  8. S. C. Ching, H. M. Lai, and K. Young, “Dielectric microspheres as optical cavities: Einstein A and B coefficients and level shift,” J. Opt. Soc. Am. B 4, 2004–2009 (1987).
  9. H. Chew, “Transition rates of atoms near spherical surfaces,” J. Chem. Phys. 87, 1355–1360 (1987).
  10. H. Chew, “Radiation and lifetimes of atoms inside dielectric particles,” Phys. Rev. A 38, 3410–3416 (1988).
  11. H.-B. Lin, J. D. Eversole, C. D. Meritt, and A. J. Campillo, “Cavity-modified spontaneous-emission rates in liquid microdroplets,” Phys. Rev. A 45, 6756–6760 (1992).
  12. H.-M. Tzeng, K. F. Wall, M. B. Long, and R. K. Chang, “Laser emission from individual droplets at wavelengths corresponding to morphology-dependent resonances,” Opt. Lett. 9, 499–501 (1984).
  13. H. B. Lin, A. L. Huston, J. D. Eversole, B. L. Justus, and A. J. Campillo, “Some characteristics of a droplet whispering gallery mode laser,” J. Opt. Soc. Am. B 8, 250–251 (1986).
  14. J. D. Eversole, H.-B. Lin, and A. J. Campillo, “Cavity-mode identification of fluorescence and lasing in dye-doped microdroplets,” Appl. Opt. 31, 1982–1991 (1992).
  15. P. Chýlek, “Partial-wave resonances and the ripple structure in the Mie normalized extinction cross section,” J. Opt. Soc. Am. 66, 285–287 (1976).
  16. R. T. Wang and H. C. van de Hulst, “Rainbows: Mie computations and the Airy approximation,” Appl. Opt. 30, 106–117 (1991).
  17. A. K. Ray, A. Souyri, E. J. Davis, and T. M. Allen, “Precision of light scattering techniques for measuring optical parameters of microspheres,” Appl. Opt. 30, 3974–3983 (1991).
  18. H. Chew, P. J. McNulty, and M. Kerker, “Model for Raman and fluorescent scattering by molecules embedded in small particles,” Phys. Rev. 13, 396–404 (1976).
  19. H.-B. Lin, J. D. Eversole, and A. J. Campillo, “Identification of morphology dependent resonances in stimulated Raman scattering from microdroplets,” Opt. Commun. 77, 407–410 (1990).
  20. G. Schweiger, “Raman scattering on single aerosol particles and on flowing aerosols: a review,” J. Aerosol Sci. 21, 483–509 (1990).
  21. C. K. Chan, R. C. Flagan, and J. H. Seinfeld, “Resonance structures in elastic and Raman scattering from microspheres,” Appl. Opt. 30, 459–467 (1991).
  22. A. S. Kwok and R. K. Chang, “Suppression of lasing by stimulated Raman scattering in microdroplets,” Opt. Lett. 18, 1597–1599 (1993).
  23. T. Kaiser, G. Roll, and G. Schweiger, “Investigation of coated droplets in an optical trap: Raman scattering, elastic-scattering and evaporation characteristics,” Appl. Opt. 35, 5918–5924 (1996).
  24. H. C. van de Hulst, Light Scattering by Small Particles (Dover, New York, 1957).
  25. M. Born and E. Wolf, Principles of Optics (Pergamon, Oxford, 1993).
  26. S.-S. Yi and O. M. Stafsudd, “Observation of lossless radiative modes of a dielectric sphere,” J. Appl. Phys. 86, 3694–3698 (1999).
  27. H. Latifi, A. Biswas, R. L. Armstrong, and R. G. Pinnick, “Lasing and stimulated Raman scattering in spherical liquid droplets: time, irradiance, and wavelength dependence,” Appl. Opt. 29, 5387–5392 (1990).
  28. P. Chýlek, H.-B. Lin, J. D. Eversole, and A. J. Campillo, “Absorption effects on microdroplet resonant emission structure,” Opt. Lett. 16, 1723–1725 (1991).
  29. W. P. Acker, A. Serpengüzel, R. K. Chang, and S. C. Hill, “Stimulated Raman scattering of fuel droplets. Chemical concentration and size determination,” Appl. Phys. B 51, 9–16 (1990).
  30. S. Lange and G. Schweiger, “Thermal radiation from spherical microparticles: a new dipole model,” J. Opt. Soc. Am. B 11, 2444–2451 (1994).
  31. V. S. Pekar, “On the theory of spontaneous and stimulated emission of electromagnetic waves in media and resonators inhomogeneous in one direction,” Zh. Eksp. Teor. Fiz. 67, 471–480 (1974).
  32. C. G. B. Garrett, W. Kaiser, and W. L. Bond, “Stimulated emission into optical whispering modes of spheres,” Phys. Rev. 124, 1807–1809 (1961).
  33. N. G. Alexopoulos and N. K. Uzunoglu, “Electromagnetic scattering from active objects: invisible scatterers,” Appl. Opt. 17, 235–239 (1978).
  34. L. A. Weinstein, Open Resonators and Open Waveguides (Sov. Radio, Moscow, 1966; Golem, Boulder, Colo., 1969).
  35. V. V. Datsyuk, “Some characteristics of resonant electromagnetic modes in a dielectric sphere,” Appl. Phys. B 54, 184–187 (1992).
  36. C. C. Lam, P. T. Leung, and K. Young, “Explicit asymptotic formulas for the positions, widths, and strength of resonances in Mie scattering,” J. Opt. Soc. Am. B 9, 1585–1592 (1992).
  37. B. R. Johnson, “Theory of morphology-dependent resonances: shape resonances and width formulas,” J. Opt. Soc. Am. A 10, 343–352 (1993).
  38. G. Roll, T. Kaiser, and G. Schweiger, “Eigenmodes of spherical dielectric cavities: coupling of internal and external rays,” J. Opt. Soc. Am. A 16, 882–895 (1999).
  39. A. S. Kwok and R. K. Chang, “Stimulated resonance Raman scattering of Rhodamine 6G,” Opt. Lett. 18, 1703–1705 (1993).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited