OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 19, Iss. 10 — Oct. 1, 2002
  • pp: 2315–2321

Amplification of high-bandwidth phase-modulated signals at 793 nm

Randy R. Reibel, Zeb Barber, Mingzhen Tian, W. Randall Babbitt, Zachary Cole, and Kristian D. Merkel  »View Author Affiliations

JOSA B, Vol. 19, Issue 10, pp. 2315-2321 (2002)

View Full Text Article

Enhanced HTML    Acrobat PDF (568 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Amplification of high-bandwidth phase-modulated optical signals from integrated-optics phase modulators at 793 nm is experimentally demonstrated using an injection-locking technique. Off-the-shelf wide-bandwidth integrated-optics modulators are power limited at 793 nm owing to photorefractive damage of the LiNbO3 waveguides. Typical optical input powers for these devices at this wavelength are less than 10 mW with optical output powers typically less than 1 mW. To amplify the outputs of these modulators, we injected the phase-modulated light into an antireflection-coated 100-mW single-mode diode laser. With the injection-locking technique, small-signal gains of 23 dB are demonstrated with good signal fidelity up to bandwidths of 3 GHz. A bandwidth limitation is found at approximately 3 GHz for sinusoidal phase-modulated signals, above which signal fidelity is seriously degraded. This limitation is significantly less than the measured relaxation oscillations of ∼5.6 GHz, suggesting a new limitation to injection locking of phase-modulated signals. Amplification of binary-phase-shift-keyed-modulated signals to 6 Gbit/s is also demonstrated with no bit errors over the 256-bit test sequences.

© 2002 Optical Society of America

OCIS Codes
(060.5060) Fiber optics and optical communications : Phase modulation
(130.3120) Integrated optics : Integrated optics devices
(140.3520) Lasers and laser optics : Lasers, injection-locked
(300.6240) Spectroscopy : Spectroscopy, coherent transient

Randy R. Reibel, Zeb Barber, Mingzhen Tian, W. Randall Babbitt, Zachary Cole, and Kristian D. Merkel, "Amplification of high-bandwidth phase-modulated signals at 793 nm," J. Opt. Soc. Am. B 19, 2315-2321 (2002)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Y. Arakawa and A. Yariv, “Theory of gain, modulation response, and spectral linewidth in AlGaAs quantum well lasers,” IEEE J. Quantum Electron. 21, 1666–1674 (1985). [CrossRef]
  2. C. Wieman and L. Hollberg, “Using diode lasers for atomic physics,” Rev. Sci. Instrum. 62, 1–20 (1991). [CrossRef]
  3. M. P. van Exter, W. A. Hamel, J. P. Woerdman, and B. R. P. Zeijlmans, “Spectral signature of relaxation oscillations in semiconductor lasers,” IEEE J. Quantum Electron. 28, 1470–1478 (1992). [CrossRef]
  4. J. Wang, M. K. Haldar, L. Li, and F. V. C. Mendis, “Enhancement of modulation bandwidth of laser diodes by injection locking,” IEEE Photonics Technol. Lett. 8, 34–36 (1996). [CrossRef]
  5. S. K. Hwang and J. M. Liu, “Dynamical characteristics of an optically injected semiconductor laser,” Opt. Commun. 183, 195–205 (2000). [CrossRef]
  6. F. Mogensen, H. Olesen, and G. Jacobsen, “Locking conditions and stability properties for a semiconductor laser with external light injection,” IEEE J. Quantum Electron. 21, 784–792 (1985). [CrossRef]
  7. S. Wieczorek, B. Krauskopf, and D. Lenstra, “A unifying view of bifurcations in a semiconductor laser subject to optical injection,” Opt. Commun. 172, 279–295 (1999). [CrossRef]
  8. R. Lang, “Injection locking properties of a semiconductor laser,” IEEE J. Quantum Electron. 18, 976–983 (1982). [CrossRef]
  9. E. K. Lee and H. S. Pang, “Bistability and chaos in an injection-locked semiconductor laser,” Phys. Rev. A 47, 736–739 (1993). [CrossRef] [PubMed]
  10. T. B. Simpson, J. M. Liu, K. F. Huang, and K. Tai, “Nonlinear dynamics induced by external optical injection in semiconductor lasers,” Quantum Semiclassic. Opt. 9, 765–784 (1997). [CrossRef]
  11. T. B. Simpson, J. M. Liu, A. Gavrielides, V. Kovanis, and P. M. Alsing, “Period-doubling cascades and chaos in a semiconductor laser with optical injection,” Phys. Rev. A 51, 4181–4185 (1995). [CrossRef] [PubMed]
  12. J. M. Liu, H. F. Chen, X. J. Meng, and T. B. Simpson, “Modulation bandwidth, noise and stability of a semiconductor laser subject to strong injection locking,” IEEE Photon. Technol. Lett. 9, 1325–1327 (1997). [CrossRef]
  13. T. B. Simpson and J. M. Liu, “Enhanced modulation bandwidth in injection-locked lasers,” IEEE Photon. Technol. Lett. 9, 1322–1324 (1997). [CrossRef]
  14. T. B. Simpson, J. M. Liu, K. F. Huang, K. Tai, C. M. Clayton, A. Gavrielides, and V. Kovanis, “Cavity enhancement of resonant frequencies in semiconductor lasers subject to optical injection,” Phys. Rev. A 52, 4348–4351 (1995). [CrossRef]
  15. T. B. Simpson, J. M. Liu, and A. Gavrielides, “Bandwidth enhancement and broadband noise reduction in injection-locked semiconductor lasers,” IEEE Photon. Technol. Lett. 7, 709–711 (1995). [CrossRef]
  16. S. Kobayashi and T. Kimura, “Optical phase modulation in an injection locked AlGaAs semiconductor laser,” IEEE J. Quantum Electron. 18, 1662–1668 (1982). [CrossRef]
  17. O. Lidoyne, P. Gallion, and D. Erasme, “Modulation properties of an injection-locked semiconductor laser,” IEEE J. Quantum Electron. 27, 344–328 (1991). [CrossRef]
  18. S. Mohrdiek, H. Burkhard, and H. Walter, “Chirp reduction of directly modulated semiconductor lasers at 10 Gb/s by strong cw light injection,” J. Lightwave Technol. 12, 418–424 (1994). [CrossRef]
  19. J. Sacher, D. Baums, P. Panknin, W. Elsässer, and E. Göbel, “Intensity instabilities of semiconductor lasers under current modulation, external light injection, and delayed feedback,” Phys. Rev. A 45, 1893–1904 (1992). [CrossRef] [PubMed]
  20. H. F. Chen, J. M. Liu, and T. B. Simpson, “Response characteristics of direct current modulation on a bandwidth-enhanced semiconductor laser under strong injection locking,” Opt. Commun. 173, 349–355 (2000). [CrossRef]
  21. P. Andrekson, N. A. Olsson, T. Tanbun-Ek, and M. Washington, “High power semiconductor laser injection-locking at 1.3 μm,” J. Lightwave Technol. 10, 903–907 (1992). [CrossRef]
  22. J. C. Livas, S. Alexander, R. Bondurant, J. Kaufmann, and M. Stevens, “1 Gbit/s injection-locked distributed feedback laser oscillator,” Electron. Lett. 27, 1042–1044 (1991). [CrossRef]
  23. K. Repasky, P. Roos, L. Meng, and J. Carlsten, “Amplified output of a frequency chirped diode source via injection locking,” Opt. Eng. 40, 2505–2509 (2001). [CrossRef]
  24. W. R. Babbitt and T. W. Mossberg, “Time-domain frequency-selective optical data storage in a solid-state material,” Opt. Commun. 65, 185–188 (1988). [CrossRef]
  25. K. D. Merkel, Z. Cole, and W. R. Babbitt, “Signal correlator with programmable variable time delay based on optical coherent transients,” J. Lumin. 86, 375–382 (2000). [CrossRef]
  26. R. MacFarlane, “Photon-echo measurements on the trivalent thulium ion,” Opt. Lett. 22, 1958–1960 (1993). [CrossRef]
  27. K. D. Merkel and R. K. Mohan, “Thulium-doped fiber amplifier at 77 K around 794 nm,” in Optical Amplifiers and Their Applications, A. Mecozzi, M. Shimizu, and J. Zyskind, eds., Vol. 44 of OSA Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 2001).
  28. V. Kovanis, A. Gavrielides, T. B. Simpson, and J. M. Liu, “Instabilities and chaos in optically injected semiconductor lasers,” Appl. Phys. Lett. 67, 2780–2782 (1995). [CrossRef]
  29. J. Troger, P. A. Nicati, L. Thevanaz, and P. A. Robert, “Novel measurement scheme for injection-locking experiments,” IEEE J. Quantum Electron. 35, 32–38 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited