OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 19, Iss. 10 — Oct. 1, 2002
  • pp: 2396–2402

Two-photon-induced photoconductivity enhancement in semiconductor microcavities: a theoretical investigation

H. Folliot, M. Lynch, A. L. Bradley, T. Krug, L. A. Dunbar, J. Hegarty, J. F. Donegan, and L. P. Barry  »View Author Affiliations


JOSA B, Vol. 19, Issue 10, pp. 2396-2402 (2002)
http://dx.doi.org/10.1364/JOSAB.19.002396


View Full Text Article

Enhanced HTML    Acrobat PDF (162 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We describe a detailed theoretical investigation of two-photon absorption photoconductivity in semiconductor microcavities. We show that high enhancement (by a factor of >10,000) of the nonlinear response can be obtained as a result of the microcavity effect. We discuss in detail the design and performance (dynamic range, speed) of such a device with the help of the example of an AlGaAs/GaAs microcavity operating at 900 nm. This device shows promise for low-intensity, fast autocorrelation and demultiplexing applications.

© 2002 Optical Society of America

OCIS Codes
(040.5150) Detectors : Photoconductivity
(190.5970) Nonlinear optics : Semiconductor nonlinear optics including MQW

Citation
H. Folliot, M. Lynch, A. L. Bradley, T. Krug, L. A. Dunbar, J. Hegarty, J. F. Donegan, and L. P. Barry, "Two-photon-induced photoconductivity enhancement in semiconductor microcavities: a theoretical investigation," J. Opt. Soc. Am. B 19, 2396-2402 (2002)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-19-10-2396


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Y. Takagi, T. Kobayashi, K. Yoshihara, and S. Imamura, “Multiple- and single-shot autocorrelator based on two-photon conductivity in semiconductors,” Opt. Lett. 17, 658–660 (1992). [CrossRef] [PubMed]
  2. F. R. Laughton, J. H. Marsh, and A. H. Kean, “Very sensitive two photon absorption GaAs/GaAlAs waveguide detector for an autocorrelator,” Electron. Lett. 28, 1663–1665 (1992). [CrossRef]
  3. F. R. Laughton, J. H. Marsh, D. A. Barrow, and E. L. Portnoi, “The two-photon absorption semiconductor waveguide autocorrelator,” IEEE J. Quantum Electron. 30, 838–845 (1994). [CrossRef]
  4. H. K. Tsang, L. Y. Chan, J. B. D. Soole, H. P. LeBlanc, R. Bhat, and M. A. Koza, “High sensitivity autocorrelation using two-photon absorption in GaInAsP waveguides,” Electron. Lett. 31, 1773–1775 (1995). [CrossRef]
  5. Z. Zheng, A. M. Weiner, J. H. Marsh, and M. M. Karkhanehchi, “Ultrafast optical thresholding based on two-photon absorption GaAs waveguide photodetectors,” IEEE Photonics Technol. Lett. 9, 493–495 (1997). [CrossRef]
  6. J. K. Ranka, A. L. Gaeta, A. Baltuska, M. S. Pschenichnikov, and D. A. Wiersma, “Autocorrelation measurement of 6-fs pulses based on the two-photon-induced photocurrent in a GaAsP photodiode,” Opt. Lett. 22, 1344–1346 (1997). [CrossRef]
  7. T. Feurer, A. Glass, and R. Sauerbrey, “Two-photon photoconductivity in SiC photodiodes and its application to autocorrelation measurements of femtosecond optical pulses,” Appl. Phys. B 65, 295–297 (1997). [CrossRef]
  8. D. T. Reid, M. Padgett, C. McGowan, W. E. Sleat, and W. Sibbett, “Light-emitting diodes as measurement devices for femtosecond laser pulses,” Opt. Lett. 22, 233–235 (1997). [CrossRef] [PubMed]
  9. D. T. Reid, W. Sibbett, J. M. Dudley, L. P. Barry, B. Thomsen, and J. D. Harvey, “Commercial semiconductor devices for two-photon absorption autocorrelation of ultrashort light pulses,” Appl. Opt. 37, 8142–8144 (1998). [CrossRef]
  10. J. U. Kang, J. B. Khurgin, C. C. Yang, H. H. Lin, and G. I. Stegeman, “Two-photon transitions between bound-to-continuum states in AlGaAs/GaAs multiple quantum well,” Appl. Phys. Lett. 73, 3638–3640 (1998). [CrossRef]
  11. L. P. Barry, B. Thomsen, J. M. Dudley, and J. D. Harvey, “Autocorrelation and ultrafast optical thresholding at 1.5 mm using a commercial InGaAsP 1.3 mm laser diode,” Electron. Lett. 34, 358–359 (1998). [CrossRef]
  12. H. Erlig, S. Wang, T. Azfar, A. Udupa, H. R. Fetterman, and D. C. Streit, “LTGaAs detector with 451fs response at 1.55μm via two-photon absorption,” Electron. Lett. 35, 173–174 (1999). [CrossRef]
  13. C.-K. Sun, J.-C. Liang, J.-C. Wang, F.-J. Kao, S. Keller, M. P. Mack, U. Mishra, and S. P. Denbaars, “Two-photon absorption study of GaN,” Appl. Phys. Lett. 76, 439–441 (2000). [CrossRef]
  14. M. Dabbicco and M. Brambilla, “Dispersion of the two-photon absorption coefficient in ZnSe,” Solid State Commun. 114, 515–519 (2000). [CrossRef]
  15. J. Manning and R. Olshansky, “The carrier-induced index change in AlGaAs and 1.3 μm InGaAsP diode Lasers,” IEEE J. Quantum Electron. 19, 1525–1530 (1983). [CrossRef]
  16. H. K. Tsang, P. P. Vasilev, I. H. White, R. V. Penty, and J. S. Aitchison, “First demonstration of two-photon absorption in a semiconductor waveguide pumped by a diode laser,” Electron. Lett. 29, 1660–1661 (1993). [CrossRef]
  17. K. Ogawa and M. D. Pelusi, “High-sensitivity pulse spectrogram measurement using two-photon absorption in a semiconductor at 1.5μm wavelength,” Opt. Express 7, 135–140 (2000), http://www.opticsexpress.org. [CrossRef] [PubMed]
  18. J. M. Dudley, L. P. Barry, J. D. Harvey, M. D. Thomson, B. C. Thomsen, P. G. Bollond, and R. Leonhardt, “Complete characterization of ultrashort pulse sources at 1550 nm,” IEEE J. Quantum Electron. 35, 441–450 (1999). [CrossRef]
  19. J. Y. Ye, M. Ishikawa, Y. Yamane, N. Tsurumachi, and H. Nakatsuka, “Enhancement of two-photon excited fluorescence using one-dimensional photonic crystals,” Appl. Phys. Lett. 75, 3605–3607 (1999). [CrossRef]
  20. C. C. Lee and Y. Fan, “Two-photon absorption with exciton effect for degenerate valence bands,” Phys. Rev. B 9, 3502–3516 (1974). [CrossRef]
  21. J. H. Bechtel and W. L. Smith, “Two-photon absorption in semiconductors with picosecond laser pulses,” Phys. Rev. B 13, 3515–3522 (1976). [CrossRef]
  22. A. Vaidyanathan, A. H. Guenther, and S. S. Mitra, “Two-photon absorption in several direct-gap crystals,” Phys. Rev. B 21, 743–748 (1980). [CrossRef]
  23. A. Vaidyanathan, A. H. Guenther, and S. S. Mitra, “Two-photon absorption in several direct-gap crystals—an addendum,” Phys. Rev. B 22, 6480–6483 (1980). [CrossRef]
  24. H. S. Brandi and C. B. De Araujo, “Multiphoton absorption coefficients in solids: a universal curve,” J. Phys. C 16, 5929–5936 (1983). [CrossRef]
  25. B. S. Wherrett, “Scaling rules for multiphoton interband absorption in semiconductors,” J. Opt. Soc. Am. B 1, 67–72 (1984). [CrossRef]
  26. M. Sheik-Bahae, D. C. Hutchings, D. J. Hagan, and E. Van Stryland, “Dispersion of bound electronic nonlinear refraction in solids,” IEEE J. Quantum Electron. 27, 1296–1309 (1991). [CrossRef]
  27. A. R. Hassan, “Two-photon absorption in an indirect-gap semiconductor quantum well system. II. Excitonic transitions,” Phys. Status Solidi B 186, 303–313 (1994). [CrossRef]
  28. M. Dabbicco and I. M. Catalano, “Measurement of the anisotropy of the two-photon absorption coefficient in ZnSe near half the band gap,” Opt. Commun. 178, 117–121 (2000). [CrossRef]
  29. M. H. Weiler, “Nonparabolicity and exciton effects in two-photon absorption in zincblende semiconductors,” Solid State Commun. 39, 937–940 (1981). [CrossRef]
  30. A. Pasquarello and A. Quattropani, “Gauge-invariant two-photon absorption in quantum wells,” Phys. Rev. B 38, 6206–6210 (1988). [CrossRef]
  31. A. Shimizu, “TPA in QW near bandgap,” Phys. Rev. B 40, 1403–1406 (1989). [CrossRef]
  32. K. Tai, “Two-photon absorption spectroscopy in GaAs quantum wells,” Phys. Rev. Lett. 62, 1784–1787 (1989). [CrossRef] [PubMed]
  33. A. Shimizu, T. Ogawa, and H. Sakaki, “Two-photon absorption spectra of low-dimensional semiconductors,” Surf. Sci. 263, 512–517 (1992). [CrossRef]
  34. A. Shimizu, T. Ogawa, and H. Sakaki, “Two-photon absorption spectra of quasi low-dimensional systems,” Phys. Rev. B 45, 11338–11341 (1992). [CrossRef]
  35. J. B. Khurgin and S. Li, “Two-photon absorption and nonresonant nonlinear index of refraction in the intersubband transitions in the quantum wells,” Appl. Phys. Lett. 62, 126–128 (1993). [CrossRef]
  36. C. C. Yang, A. Villeneuve, G. I. Stegeman, C. H. Lin, and H. H. Lin, “Anisotropic two-photon transitions in GaAs/AlGaAs multiple quantum well waveguides,” IEEE J. Quantum Electron. 29, 2934–2939 (1993). [CrossRef]
  37. A. Obeidat and J. Khurgin, “Excitonic enhancement of two-photon absorption in semiconductor quantum well structures,” J. Opt. Soc. Am. B 12, 1222–1227 (1995). [CrossRef]
  38. M. N. Islam, C. E. Soccolich, R. E. Slusher, A. F. J. Levi, W. S. Hobson, and M. G. Young, “Nonlinear spectroscopy near half-bandgap in bulk and quantum well GaAs/GaAlAs waveguides,” J. Appl. Phys. 71, 1927–1936 (1992). [CrossRef]
  39. P. M. W. Skovgaard, R. J. Mullane, D. N. Nikogosyan, and J. G. McInerney, “Two-photon conductivity in semiconductor waveguide autocorrelators,” Opt. Commun. 153, 78–82 (1998). [CrossRef]
  40. M. B. Yairi, C. W. Coldren, D. A. B. Miller, and J. S. Harris, “High-speed optically controlled surface-normal optical switch based on conductive diffusion,” Appl. Phys. Lett. 75, 597–599 (1999). [CrossRef]
  41. A. T. Obeidat, W. H. Knox, and J. B. Khurgin, “Effects of two-photon absorption in saturable Bragg reflectors used in femtosecond solid state lasers,” Opt. Express 1(3), 68–72 (1997), http://www.optics express.org. [CrossRef] [PubMed]
  42. S. Sanchez, C. De Matos, and M. Pugnet, “Instantaneous optical modulation in bulk GaAs semiconductor microcavities,” Appl. Phys. Lett. 78, 3779–3781 (2001). [CrossRef]
  43. T. G. Ulmer, R. K. Tan, Zhiping Zhou, S. E. Ralph, R. P. Kenan, C. M. Verber, and A. J. Springthorpe, “Two-photon absorption-induced self-phase modulation in GaAs–AlGaAs waveguides for surface-emitted second-harmonic generation,” Opt. Lett. 24, 756–758 (1999). [CrossRef]
  44. W. Schade, J. Preusser, D. L. Osborn, Y. Y. Lee, J. deGouw, and S. R. Leone, “Spatially resolved femtosecond time correlation measurements on a GaAsP photodiode,” Opt. Commun. 162, 200–203 (1999). [CrossRef]
  45. Y. J. Chiu, S. Z. Zang, S. B. Fleischu, J. E. Bowers, and U. K. Mishra, “GaAs-based, 1.55 μm high speed, high saturation power, low-temperature grown GaAs p–i–n photodetector,” Electron. Lett. 34, 1253–1254 (1998). [CrossRef]
  46. H. Folliot, M. Lynch, A. L. Bradley, L. A. Dunbar, J. Hegarty, J. F. Donegan, L. P. Barry, J. S. Roberts, and G. Hill, “Two-photon absorption photocurrent enhancement in bulk AlGaAs semiconductor microcavities,” Appl. Phys. Lett. 80, 1328–1330 (2002). [CrossRef]
  47. D. S. Golubovic, P. S. Matavulj, and J. B. Radunovic, “Resonant cavity-enhanced Schottky photodiode modeling and analysis,” Semicond. Sci. Technol. 15, 950–956 (2000). [CrossRef]
  48. D. M. Gvozdic, P. L. Nikoloic, and J. B. Radunovic, “Optimization of a resonant cavity enhanced MSM photodetector,” Semicond. Sci. Technol. 15, 630–637 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited